Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Teichmüller mapping class group of the universal hyperbolic solenoid

Authors: Vladimir Markovic and Dragomir Saric
Journal: Trans. Amer. Math. Soc. 358 (2006), 2637-2650
MSC (2000): Primary 30F60; Secondary 32G05, 32G15, 37F30
Published electronically: October 31, 2005
MathSciNet review: 2204048
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the homotopy class of a quasiconformal self-map of the universal hyperbolic solenoid $ H_\infty$ is the same as its isotopy class and that the uniform convergence of quasiconformal self-maps of $ H_\infty$ to the identity forces them to be homotopic to conformal maps. We identify a dense subset of $ \mathcal{T}(H_\infty )$ such that the orbit under the base leaf preserving mapping class group $ MCG_{BLP}(H_\infty)$ of any point in this subset has accumulation points in the Teichmüller space $ \mathcal{T}(H_\infty )$. Moreover, we show that finite subgroups of $ MCG_{BLP}(H_\infty )$ are necessarily cyclic and that each point of $ \mathcal{T}(H_\infty)$ has an infinite isotropy subgroup in $ MCG_{BLP}(H_\infty )$.

References [Enhancements On Off] (What's this?)

  • 1. L. Bers, Universal Teichmüller Space, Analytic methods in mathematical physics (Sympos., Indiana Univ., Bloomington, Ind., 1968), pp. 65-83. Gordon and Breach, New York, 1970. MR 0349988 (50:2481)
  • 2. I. Biswas and S. Nag, Weil-Petersson geometry and determinant bundles on inductive limits of moduli spaces, Lipa's legacy (New York, 1995), pp. 51-80, Contemp. Math., vol. 211. MR 1476981 (99m:14050)
  • 3. I. Biswas and S. Nag, Limit constructions over Riemann surfaces and their parameter spaces, and the commensurability group action, Sel. Math., new ser. 6 (2000), pp. 185-224.MR 1816860 (2002f:32026)
  • 4. A. Candel, Uniformization of surface laminations, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 4, pp. 489-516. MR 1235439 (94f:57025)
  • 5. A. Douady and C. J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), no. 1-2, 23-48. MR 0857678 (87j:30041)
  • 6. C. Earle and C. McMullen, Quasiconformal isotopies, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), 143-154, Math. Sci. Res. Inst. Publ., no. 10, Springer, New York, 1988. MR 0955816 (89h:30028)
  • 7. É. Ghys, Laminations par surfaces de Riemann, Dynamique et géométrie complexes (Lyon, 1997), ix, xi, 49-95, Panor. Synthèses, 8, Soc. Math. France, Paris, 1999.MR 1760843 (2001g:37068)
  • 8. S. Kerckhoff, The Nielsen Realization Problem, Ann. of Math. 117, 235-265, 1983. MR 0690845 (85e:32029)
  • 9. G. A. Margulis, Discrete groups of motions of manifolds of non-positive curvature, Proc. Int. Cong. Math., vol. 2, Vancouver, 1974, pp. 21-34. MR 0492072 (58:11226)
  • 10. S. Nag and D. Sullivan, Teichmüller theory and the universal period mappings via quantum calculus and the $ H^{1/2}$ space of the circle, Osaka J. Math. 32 (1995), 1-34.MR 1323099 (96c:32023)
  • 11. C. Odden, Virtual automorphism group of the fundamental group of a closed surface, Ph.D. Thesis, Duke University, Durham, 1997.
  • 12. D. Šaric, On Quasiconformal Deformations of the Universal Hyperbolic Solenoid, preprint, available at:$ \sim$ saric.
  • 13. D. Sullivan, Linking the universalities of Milnor-Thurston, Feigenbaum and Ahlfors-Bers, Milnor Festschrift, Topological methods in modern mathematics (L. Goldberg and A. Phillips, eds.), Publish or Perish, 1993, 543-563. MR 1215976 (94c:58060)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 30F60, 32G05, 32G15, 37F30

Retrieve articles in all journals with MSC (2000): 30F60, 32G05, 32G15, 37F30

Additional Information

Vladimir Markovic
Affiliation: Institute of Mathematics, University of Warwick, CV4 7AL Coventry, United Kingdom

Dragomir Saric
Affiliation: Institute of Mathematics, State University of New York, Stony Brook, New York 11794-3660

Received by editor(s): July 22, 2004
Published electronically: October 31, 2005
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society