Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the contact geometry of nodal sets

Author: R. Komendarczyk
Journal: Trans. Amer. Math. Soc. 358 (2006), 2399-2413
MSC (2000): Primary 53D10
Published electronically: December 20, 2005
MathSciNet review: 2204037
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the 3-dimensional Riemannian geometry, contact structures equipped with an adapted Riemannian metric are divergence-free, nondegenerate eigenforms of the Laplace-Beltrami operator. We trace out a two-dimensional consequence of this fact: there is a close relationship between the topology of the contact structure on a convex surface in the 3-manifold (the dividing curves) and the nodal curves of Laplacian eigenfunctions on that surface. Motivated by this relationship, we consider a topological version of Payne's conjecture for the free membrane problem. We construct counterexamples to Payne's conjecture for closed Riemannian surfaces. In light of the correspondence between the nodal lines and dividing curves, we interpret the conjecture in terms of the tight versus overtwisted dichotomy for contact structures.

References [Enhancements On Off] (What's this?)

  • 1. G. Alessandrini.
    Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains.
    Comment. Math. Helv., 69(1):142-154, 1994. MR 1259610 (95d:35111)
  • 2. C. Anné.
    Perturbation du spectre $ X- TUB\sp \epsilon Y$ (conditions de Neumann).
    In Séminaire de Théorie Spectrale et Géométrie, No. 4, Année 1985-1986, pages 17-23. Univ. Grenoble I, Saint, 1986. MR 1046060
  • 3. C. Anné and B. Colbois.
    Opérateur de Hodge-Laplace sur des variétés compactes privées d'un nombre fini de boules.
    J. Funct. Anal., 115(1):190-211, 1993. MR 1228148 (94i:58197)
  • 4. T. Aubin.
    Some nonlinear problems in Riemannian geometry.
    Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. MR 1636569 (99i:58001)
  • 5. S. Bando and H. Urakawa.
    Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds.
    Tôhoku Math. J. (2), 35(2):155-172, 1983. MR 0699924 (84h:58146)
  • 6. S. Y. Cheng.
    Eigenfunctions and nodal sets.
    Comment. Math. Helv., 51(1):43-55, 1976. MR 0397805 (53:1661)
  • 7. S. S. Chern and R. S. Hamilton.
    On Riemannian metrics adapted to three-dimensional contact manifolds.
    In Workshop Bonn 1984 (Bonn, 1984), volume 1111 of Lecture Notes in Math., pages 279-308. Springer, Berlin, 1985. MR 0797427 (87b:53060)
  • 8. Y. Eliashberg.
    Classification of overtwisted contact structures on $ 3$-manifolds.
    Invent. Math., 98(3):623-637, 1989. MR 1022310 (90k:53064)
  • 9. J. Etnyre.
    Tight contact structures on lens spaces.
    Commun. Contemp. Math., 2(4):559-577, 2000. MR 1806947 (2001k:57017)
  • 10. J. Etnyre and R. Ghrist.
    Contact topology and hydrodynamics. I. Beltrami fields and the Seifert conjecture.
    Nonlinearity, 13(2):441-458, 2000. MR 1735969 (2001b:76008)
  • 11. P. Freitas.
    Closed nodal lines and interior hot spots of the second eigenfunction of the Laplacian on surfaces.
    Indiana Univ. Math. J., 51(2):305-316, 2002. MR 1909291 (2003d:58045)
  • 12. D. Gauld.
    Differential topology, An introduction, volume 72 of Monographs and Textbooks in Pure and Applied Mathematics.
    Marcel Dekker Inc., New York, 1982. MR 0680937 (84k:57013)
  • 13. R. Ghrist and R. Komendarczyk.
    Overtwisted energy-minimizing curl eigenfields.
    preprint, arXiv:math.SG/0411319.
  • 14. D. Gilbarg and N. Trudinger.
    Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
    Springer-Verlag, Berlin, second edition, 1983. MR 0737190 (86c:35035)
  • 15. E. Giroux.
    Structures de contact sur les variétés fibrées en cercles audessus d'une surface.
    Comment. Math. Helv., 76(2):218-262, 2001. MR 1839346 (2002c:53138)
  • 16. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and N. Nadirashvili.
    On the nodal line conjecture.
    In Advances in differential equations and mathematical physics (Atlanta, GA, 1997), volume 217 of Contemp. Math., pages 33-48. Amer. Math. Soc., Providence, RI, 1998. MR 1605269 (99c:35045)
  • 17. K. Honda.
    On the classification of tight contact structures. I.
    Geom. Topol., 4:309-368 (electronic), 2000. MR 1786111 (2001i:53148)
  • 18. K. Honda.
    On the classification of tight contact structures. II.
    J. Differential Geom., 55(1):83-143, 2000. MR 1849027 (2002g:53155)
  • 19. K. Honda, W. Kazez, and G. Matic.
    Convex decomposition theory.
    Int. Math. Res. Not., (2):55-88, 2002. MR 1874319 (2002k:57064)
  • 20. R. Komendarczyk.
    Ph.D. thesis - in preparation.
  • 21. J. Martinet.
    Formes de contact sur les variétés de dimension $ 3$.
    In Proceedings of Liverpool Singularities Symposium, II (1969/1970), pages 142-163. Lecture Notes in Math., Vol. 209, Springer, Berlin, 1971. MR 0350771 (50:3263)
  • 22. A. Melas.
    On the nodal line of the second eigenfunction of the Laplacian in $ {\bf R}\sp 2$.
    J. Differential Geom., 35(1):255-263, 1992. MR 1152231 (93g:35100)
  • 23. L. Payne.
    Isoperimetric inequalities and their applications.
    SIAM Rev., 9:453-488, 1967. MR 0218975 (36:2058)
  • 24. J. Rauch and M. Taylor.
    Potential and scattering theory on wildly perturbed domains.
    J. Funct. Anal., 18:27-59, 1975. MR 0377303 (51:13476)
  • 25. J. Roe.
    Elliptic operators, topology and asymptotic methods, volume 395 of Pitman Research Notes in Mathematics Series.
    Longman, Harlow, second edition, 1998. MR 1670907 (99m:58182)
  • 26. S. Rosenberg.
    The Laplacian on a Riemannian manifold, An introduction to analysis on manifolds, volume 31 of London Mathematical Society Student Texts.
    Cambridge University Press, Cambridge, 1997. MR 1462892 (98k:58206)
  • 27. J. Takahashi.
    Collapsing of connected sums and the eigenvalues of the Laplacian.
    J. Geom. Phys., 40(3-4):201-208, 2002. MR 1866987 (2002h:58046)
  • 28. K. Uhlenbeck.
    Generic properties of eigenfunctions.
    Amer. J. Math., 98(4):1059-1078, 1976. MR 0464332 (57:4264)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53D10

Retrieve articles in all journals with MSC (2000): 53D10

Additional Information

R. Komendarczyk
Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332

Keywords: Nodal lines, dividing curves, contact structures, eigenfunctions of Laplacian
Received by editor(s): March 19, 2004
Published electronically: December 20, 2005
Additional Notes: This research was partially supported by NSF grant DMS-0134408
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society