Uniform asymptotics for Jacobi polynomials with varying large negative parameters a RiemannHilbert approach
Authors:
R. Wong and Wenjun Zhang
Journal:
Trans. Amer. Math. Soc. 358 (2006), 26632694
MSC (2000):
Primary 41A60, 33C45
Published electronically:
January 25, 2006
MathSciNet review:
2204051
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An asymptotic expansion is derived for the Jacobi polynomials with varying parameters and , where and are constants. Our expansion is uniformly valid in the upper halfplane . A corresponding expansion is also given for the lower halfplane . Our approach is based on the steepestdescent method for RiemannHilbert problems introduced by Deift and Zhou (1993). The two asymptotic expansions hold, in particular, in regions containing the curve , which is the support of the equilibrium measure associated with these polynomials. Furthermore, it is shown that the zeros of these polynomials all lie on one side of , and tend to as .
 1.
Christof
Bosbach and Wolfgang
Gawronski, Strong asymptotics for Jacobi polnomials with varying
weights, Methods Appl. Anal. 6 (1999), no. 1,
39–54. Dedicated to Richard A.\ Askey on the occasion of his 65th
birthday, Part I. MR 1803880
(2001i:30040)
 2.
LiChen
Chen and Mourad
E. H. Ismail, On asymptotics of Jacobi polynomials, SIAM J.
Math. Anal. 22 (1991), no. 5, 1442–1449. MR 1112518
(92g:33011), http://dx.doi.org/10.1137/0522092
 3.
P.
Deift, T.
Kriecherbauer, K.
TR McLaughlin, S.
Venakides, and X.
Zhou, Strong asymptotics of orthogonal polynomials with respect to
exponential weights, Comm. Pure Appl. Math. 52
(1999), no. 12, 1491–1552. MR 1711036
(2001f:42037), http://dx.doi.org/10.1002/(SICI)10970312(199912)52:12<1491::AIDCPA2>3.3.CO;2R
 4.
P.
Deift, S.
Venakides, and X.
Zhou, New results in small dispersion KdV by an extension of the
steepest descent method for RiemannHilbert problems, Internat. Math.
Res. Notices 6 (1997), 286–299. MR 1440305
(98b:35155), http://dx.doi.org/10.1155/S1073792897000214
 5.
P.
Deift and X.
Zhou, A steepest descent method for oscillatory RiemannHilbert
problems. Asymptotics for the MKdV equation, Ann. of Math. (2)
137 (1993), no. 2, 295–368. MR 1207209
(94d:35143), http://dx.doi.org/10.2307/2946540
 6.
H.
Dette and W.
J. Studden, Some new asymptotic properties for the zeros of Jacobi,
Laguerre, and Hermite polynomials, Constr. Approx. 11
(1995), no. 2, 227–238. MR 1342385
(96i:33015), http://dx.doi.org/10.1007/BF01203416
 7.
A.
S. Fokas, A.
R. It\cydots, and A.
V. Kitaev, The isomonodromy approach to matrix models in 2D quantum
gravity, Comm. Math. Phys. 147 (1992), no. 2,
395–430. MR 1174420
(93h:81115)
 8.
C.
L. Frenzen and R.
Wong, A uniform asymptotic expansion of the Jacobi polynomials with
error bounds, Canad. J. Math. 37 (1985), no. 5,
979–1007. MR 806651
(87a:33017), http://dx.doi.org/10.4153/CJM19850535
 9.
A. B. J. Kuijlaars, A. MartinezFinkelshtein and R. Orive, Orthogonality of Jacobi polynomials with general parameters, Electr. Trans. Numer. Anal., to appear.
 10.
Arno
B. J. Kuijlaars and Kenneth
T.R. McLaughlin, RiemannHilbert analysis for Laguerre polynomials
with large negative parameter, Comput. Methods Funct. Theory
1 (2001), no. 1, 205–233. MR 1931612
(2003k:30059), http://dx.doi.org/10.1007/BF03320986
 11.
A.
MartínezFinkelshtein, P.
MartínezGonzález, and R.
Orive, Zeros of Jacobi polynomials with varying nonclassical
parameters, Special functions (Hong Kong, 1999) World Sci. Publ.,
River Edge, NJ, 2000, pp. 98–113. MR 1805976
(2002d:33017)
 12.
F.
W. J. Olver, Asymptotics and special functions, Academic Press
[A subsidiary of Harcourt Brace Jovanovich, Publishers], New YorkLondon,
1974. Computer Science and Applied Mathematics. MR 0435697
(55 #8655)
Frank
W. J. Olver, Asymptotics and special functions, AKP Classics,
A K Peters, Ltd., Wellesley, MA, 1997. Reprint of the 1974 original
[Academic Press, New York; MR0435697 (55 #8655)]. MR 1429619
(97i:41001)
 13.
Gábor
Szegő, Orthogonal polynomials, 4th ed., American
Mathematical Society, Providence, R.I., 1975. American Mathematical
Society, Colloquium Publications, Vol. XXIII. MR 0372517
(51 #8724)
 14.
Nico
M. Temme, Large parameter cases of the Gauss hypergeometric
function, Proceedings of the Sixth International Symposium on
Orthogonal Polynomials, Special Functions and their Applications (Rome,
2001), 2003, pp. 441–462. MR 1985714
(2004f:33006), http://dx.doi.org/10.1016/S03770427(02)006271
 15.
R.
Wong, Asymptotic approximations of integrals, Computer Science
and Scientific Computing, Academic Press, Inc., Boston, MA, 1989. MR 1016818
(90j:41061)
 16.
R.
Wong and YuQiu
Zhao, Uniform asymptotic expansion of the Jacobi polynomials in a
complex domain, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
460 (2004), no. 2049, 2569–2586. MR 2080215
(2005f:33021), http://dx.doi.org/10.1098/rspa.2004.1296
 1.
 C. Bosbach and W. Gawronski, Strong asymptotics for Jacobi polynomials with varying weights, Methods Appl. Anal. 6 (1999), 3954. MR 1803880 (2001i:30040)
 2.
 L.C. Chen and M.E.H. Ismail, On asymptotics of Jacobi polynomials, SIAM J. Math. Anal. 22 (1991), 14421449. MR 1112518 (92g:33011)
 3.
 P. Deift, T. Kriecherbauer, K. T.R. McLaughlin, S. Venakides and X. Zhou, Strong asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math. 52 (1999), 14911552. MR 1711036 (2001f:42037)
 4.
 P. Deift, S. Venakides and X. Zhou, New results in small dispersion by an extension of the steepest descent method for RiemannHilbert problems, Internat. Math. Res. Notices 1997, no.6, (1997), 286299. MR 1440305 (98b:35155)
 5.
 P. Deift and X. Zhou, A steepest descent method for oscillatory RiemannHilbert problems, asymptotics for the equation, Ann. Math. 137 (1993), 295368. MR 1207209 (94d:35143)
 6.
 H. Dette and W. J. Studden, Some new asymptotic properties for the zeros of Jacobi, Laguerre, and Hermite polynomials, Constr. Approx. 11 (1995), 227238. MR 1342385 (96i:33015)
 7.
 A. S. Fokas, A. R. Its and A. V. Kitaev, The isomonodromy approach to matrix models in 2D quantum gravity, Comm. Math. Phys. 147 (1992), 395430. MR 1174420 (93h:81115)
 8.
 C. L. Frenzen and R. Wong, A uniform asymptotic expansion of the Jacobi polynomials with error bounds, Can. J. Math. 37 (1985), 9791007. MR 0806651 (87a:33017)
 9.
 A. B. J. Kuijlaars, A. MartinezFinkelshtein and R. Orive, Orthogonality of Jacobi polynomials with general parameters, Electr. Trans. Numer. Anal., to appear.
 10.
 A. B. J. Kuijlaars and K. TR McLaughlin, RiemannHilbert analysis for Laguerre polynomials with large negative parameters, Comput. Meth. Funct. Theory 1 (2001), 205233. MR 1931612 (2003k:30059)
 11.
 A. MartinezFinkelshtein, P. MartinezGonzalez and R. Orive, Zeros of Jacobi polynomials with varying nonclassical parameters, in Proceedings of the International Workshop on Special Functions, C. Dunkl, M. E. H. Ismail and R. Wong (eds.), World Scientific, Singapore, 2000. MR 1805976 (2002d:33017)
 12.
 F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974 MR 0435697 (55:8655). Reprinted by A. K. Peters, Wellesley, 1997. MR 1429619 (97i:41001)
 13.
 G. Szegö, Orthogonal Polynomials, 4th edition, Colloquium Publications, Vol. 23, Amer. Math. Soc., Providence, R.I., 1975. MR 0372517 (51:8724)
 14.
 N. M. Temme, Large parameter cases of the Gauss hypergeometric function, J. Comput. Appl. Math. 153 (2003), 441462. MR 1985714 (2004f:33006)
 15.
 R. Wong, Asymptotic Approximations of Integrals, Academic Press, Boston, 1989. Reprinted by SIAM, Philadelphia, PA, 2001. MR 1016818 (90j:41061)
 16.
 R. Wong and Y.Q. Zhao, Uniform asymptotic expansion of the Jacobi polynomials in a complex domain, Proc. Roy. Soc. Lond. A 460 (2004), no. 2049, 25692586. MR 2080215 (2005f:33021)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
41A60,
33C45
Retrieve articles in all journals
with MSC (2000):
41A60,
33C45
Additional Information
R. Wong
Affiliation:
Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
Wenjun Zhang
Affiliation:
Department of Mathematics, Normal College, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China, 518060
Email:
zwj@szu.edu.cn
DOI:
http://dx.doi.org/10.1090/S0002994706039018
PII:
S 00029947(06)039018
Keywords:
Jacobi polynomials,
RiemannHilbert problem,
uniform asymptotics,
zero distribution,
equilibrium measure
Received by editor(s):
August 3, 2004
Published electronically:
January 25, 2006
Additional Notes:
The work of the first author was partially supported by the Research Grant Council of Hong Kong under project 9040980, and the work of the second author was partially supported by the National Natural Science Foundation of China
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
