Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Moduli of curves and spin structures via algebraic geometry


Authors: Gilberto Bini and Claudio Fontanari
Journal: Trans. Amer. Math. Soc. 358 (2006), 3207-3217
MSC (2000): Primary 14H10, 14E08
DOI: https://doi.org/10.1090/S0002-9947-06-03838-4
Published electronically: February 20, 2006
MathSciNet review: 2216264
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Here we investigate some birational properties of two collections of moduli spaces, namely moduli spaces of (pointed) stable curves and of (pointed) spin curves. In particular, we focus on vanishings of Hodge numbers of type $ (p,0)$ and on computations of Kodaira dimension. Our methods are purely algebro-geometric and rely on an induction argument on the number of marked points and the genus of the curves.


References [Enhancements On Off] (What's this?)

  • 1. Abramovich, D., Jarvis, T. J.: Moduli of twisted spin curves. Proc. Amer. Math. Soc. 131, 685-699 (2003). MR 1937405 (2003k:14027)
  • 2. Arbarello, E., Cornalba, M.D.T.: The Picard groups of the moduli spaces of curves. Topology 26, 153-171 (1987). MR 0895568 (88e:14032)
  • 3. Arbarello, E., Cornalba, M.D.T.: Calculating cohomology groups of moduli spaces of curves via algebraic geometry. Inst. Hautes Études Sci. Publ. Math. 88, 97-127 (1998).MR 1733327 (2001h:14030)
  • 4. Arbarello, E., Cornalba, M.D.T.: Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves. J. Alg. Geom. 5, 705-749 (1996).MR 1486986 (99c:14033)
  • 5. Belorousski, P.: Chow rings of moduli spaces of pointed elliptic curves. Ph.D. thesis, Chicago, 1998.
  • 6. Bini, G.: Generalized Hodge classes on moduli spaces of curves. Beiträge zur Algebra und Geometrie 44 (2003), 559-565. MR 2017857 (2004k:14042)
  • 7. Caporaso, L., Casagrande, C.: Combinatorial properties of stable spin curves. Special issue in honor of Steven L. Kleiman. Comm. Algebra 31 (2003), no. 8, 3653-3672. MR 2007379 (2004i:14026)
  • 8. Cornalba, M.D.T.: Moduli of curves and theta-characteristics. In: Lectures on Riemann surfaces (Trieste, 1987), 560-589, Teaneck, N.J.: World Sci. Publishing, 1989.MR 1082361 (91m:14037)
  • 9. Cornalba, M.D.T.: A remark on the Picard group of spin moduli space. Rend. Mat. Acc. Lincei (9) Mat. Appl. 2, 211-217 (1991). MR 1135424 (92k:14007)
  • 10. Cornalba, M.D.T.: Cohomology of moduli spaces of stable curves. In: Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 249-257, Doc. Math., 1998. MR 1648075 (99i:14031)
  • 11. Faber, C., Looijenga, E., Remarks on moduli of curves. In: Moduli of curves and abelian varieties, 23-45, Aspects Math., E33, Vieweg, Braunschweig, 1999. MR 1722537 (2001b:14044)
  • 12. Farkas, G.: The geometry of the moduli space of curves of genus $ 23$. Math. Ann. 318, 43-65 (2000). MR 1785575 (2001f:14048)
  • 13. Getzler, E.: The semi-classical approximation for modular operads. Comm. Math. Phys. 194, 481-492 (1998). MR 1627677 (99d:14017)
  • 14. Getzler, E.: The Hodge polynomials of $ {\overline{\mathcal M}}_{3,1}$. Preprint http://xxx.lanl.gov/abs/ math.AG/9910174 (1999).
  • 15. Graber, T., Pandharipande, R.: Constructions of nontautological classes on moduli spaces of curves. Michigan Math. J. 51, 93-109 (2003). MR 1960923 (2004e:14043)
  • 16. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. New York: John Wiley and Sons, Inc., 1978. MR 0507725 (80b:14001)
  • 17. Harer, J.: The second homology group of the mapping class group of an orientable surface. Inv. Math. 72, 221-239 (1982).MR 0700769 (84g:57006)
  • 18. Harer, J.: The virtual cohomological dimension of the mapping class group of an orientable surface. Invent. Math. 84, 157-176 (1986).MR 0830043 (87c:32030)
  • 19. Harer, J.: Stability of the homology of the moduli spaces of Riemann surfaces with spin structure. Math. Ann. 287, 323-334 (1990).MR 1054572 (91e:57002)
  • 20. Harer, J.: The rational Picard group of the moduli space of Riemann surfaces with spin structure. In: Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991), 107-136, Contemp. Math. 150, 1993. MR 1234262 (94h:14008)
  • 21. Harris, J., Morrison, I.: Moduli of curves, Springer-Verlag, New York, 1998. MR 1631825 (99g:14031)
  • 22. Harris, J., Mumford, D.: On the Kodaira dimension of the moduli space of curves. With an Appendix by William Fulton. Invent. Math. 67 (1982), 23-88. MR 0664324 (83i:14018)
  • 23. Jarvis, T.J.: Geometry of the moduli of higher spin curves. Internat. J. Math. 11, 637-663 (2000). MR 1780734 (2001f:14050)
  • 24. Jarvis, T.J.: Picard group of the moduli of higher spin curves. New York J. Math. 7, 23-47 (2001). MR 1838471 (2002j:14032)
  • 25. Keel, S.: Intersection theory of moduli space of stable $ n$ pointed curves of genus zero. Trans. Amer. Math. Soc. 330 (1992), 545-574.MR 1034665 (92f:14003)
  • 26. Logan, A.: The Kodaira dimension of moduli spaces of curves with marked points. Amer. J. Math. 125, 105-137 (2003). MR 1953519 (2003j:14035)
  • 27. Pikaart, M.: An orbifold partition of $ \overline M{}\sp n\sb g$. In: The moduli space of curves, (Texel Island, 1994), Progr. Math. 129, 467-482. Birkhäuser, Boston, 1995.MR 1363067 (96m:14033)
  • 28. Ueno, U.: Classification theory of algebraic varieties and compact complex spaces, Lec. Notes in Math. 439, Springer-Verlag, New York, 1975.MR 0506253 (58:22062)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14H10, 14E08

Retrieve articles in all journals with MSC (2000): 14H10, 14E08


Additional Information

Gilberto Bini
Affiliation: Dipartimento di Matematica, Università degli Studi di Milano, Via C. Saldini 50, 20133 Milano, Italy
Email: gilberto.bini@mat.unimi.it

Claudio Fontanari
Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Email: fontanar@science.unitn.it

DOI: https://doi.org/10.1090/S0002-9947-06-03838-4
Received by editor(s): January 13, 2004
Received by editor(s) in revised form: September 8, 2004
Published electronically: February 20, 2006
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society