FROBENIUS MORPHISMS
AND REPRESENTATIONS OF ALGEBRAS

BANGMING DENG AND JIE DU

Abstract. By introducing Frobenius morphisms F on algebras A and their modules over the algebraic closure \overline{F}_q of the finite field F_q of q elements, we establish a relation between the representation theory of A over \overline{F}_q and that of the F-fixed point algebra A^F over F_q. More precisely, we prove that the category $\text{mod-}A^F$ of finite-dimensional A^F-modules is equivalent to the subcategory of finite-dimensional F-stable A-modules, and, when A is finite dimensional, we establish a bijection between the isoclasses of indecomposable A^F-modules and the F-orbits of the isoclasses of indecomposable A-modules.

Applying the theory to representations of quivers with automorphisms, we show that representations of a modulated quiver (or a species) over \overline{F}_q can be interpreted as F-stable representations of the corresponding quiver over F_q. We further prove that every finite-dimensional hereditary algebra over F_q is Morita equivalent to some A^F, where A is the path algebra of a quiver Q over F_q and F is induced from a certain automorphism of Q. A close relation between the Auslander-Reiten theories for A and A^F is established. In particular, we prove that the Auslander-Reiten (modulated) quiver of A^F is obtained by “folding” the Auslander-Reiten quiver of A. Finally, by taking Frobenius fixed points, we are able to count the number of indecomposable representations of a modulated quiver over F_q with a given dimension vector and to generalize Kac’s theorem for all modulated quivers and their associated Kac–Moody algebras defined by symmetrizable generalized Cartan matrices.

1. Introduction

In his work [14], Gabriel introduced the idea of quiver representations and discovered a remarkable connection between the indecomposable representations of (simply-laced) Dynkin quivers and the positive roots of the corresponding finite-dimensional simple Lie algebras. The theory of quiver representations may not only be viewed as a new language for a whole range of problems in linear algebra, but it also provides a platform for bringing new ideas and techniques from algebraic geometry and Lie theory into the subject. There are two major fundamental developments after Gabriel’s work. In order to complete Gabriel’s classification to include all Dynkin graphs, Dlab and Ringel [10] studied representations of a modulated quiver (or a species) and proved that a modulated quiver admits only finitely many indecomposable representations if and only if it is of Dynkin type. In the subsequent works [12, 31, 11], representations of both quivers and modulated quivers...
of “tame” representation type are classified. On the other hand, by employing the methods of invariant theory, Kac [24, 25] was able to establish a connection between the indecomposable representations of any finite quiver and the positive roots of the corresponding Kac-Moody algebra with a symmetric generalized Cartan matrix. See [32] for a further developing influence of the theory of finite-dimensional algebras in the study of Lie theory.

These fundamental works provide two major approaches in the representation theory of algebras. The quiver approach over an algebraically closed field often uses geometric methods and deals with the case of symmetric (generalized) Cartan matrices in the context of Lie theory, while the modulated quiver approach, though a bit artificial, is purely algebraic, and suitable for an arbitrary ground field. In particular, the underlying valued quiver of a modulated quiver over a finite field is usually not constantly valued. So the corresponding Cartan matrix is not symmetric, but symmetrizable. Thus, the modulated quiver approach covers all symmetrizable Cartan matrices. Since a symmetrizable Cartan matrix can be obtained by folding the graph of a symmetric Cartan matrix via a graph automorphism, it is natural to ask if such an idea of folding can be lifted to the algebra and representation levels.

Originating from Galois theory, Frobenius morphisms are fundamental in the theory of algebraic groups and their representations. It is the key idea to investigating the rational structure of algebraic groups and to relating finite groups of Lie type to the corresponding algebraic groups (see [3]). In the theory of rational representations of algebraic groups, Frobenius kernels play a key role, and the Frobenius twisting functor is centrally important in solving the main problems of the theory such as Steinberg’s tensor product theorem and the Lusztig conjecture (see [22]).

In this paper, we shall combine the idea of folding graphs with the idea of Frobenius morphisms to build a direct bridge between the quiver and modulated quiver approaches. By introducing Frobenius morphisms on algebras A defined over \mathbb{F}_q, we shall prove that representations of the fixed point algebra A^F are obtained by taking fixed points of F-stable representations of A. In particular, if A is the path algebra of a quiver Q which admits an admissible automorphism σ, i.e., the path algebra of an ad-quiver (see Example 3.5), and F is the Frobenius morphism on A induced from σ, then A^F is isomorphic to the tensor algebra of the modulated quiver obtained by “folding” Q and A through σ and F, respectively. Thus, the representation theory of an \mathbb{F}_q-modulated quiver can be realized as that of an ordinary quiver Q by simply taking fixed points of F-stable representations of Q over \mathbb{F}_q. We further prove that the representation types of modulated quivers are completely determined by the corresponding classification for quivers and that every finite-dimensional hereditary (basic) algebra over a finite field is isomorphic to the fixed point algebra of a path algebra. We also establish a relation between the Auslander-Reiten theories of A and its fixed point algebra A^F.

We organize the paper as follows. Section 2 is a brief introduction to \mathbb{F}_q-structures of vector spaces. In §3 we consider algebras A with Frobenius morphisms F and define F-stable A-modules. Then we show that the category of F-stable A-modules is equivalent to the category of modules over the fixed point algebra A^F. In §4 we define the Frobenius twist of an A-module and introduce the notion of F-periodic A-modules. As a result, we prove in §5 that each indecomposable A^F-module can be obtained by “folding” F-periodic A-modules. In
particular, if A is finite dimensional, there is a bijection between indecomposable A^F-modules and F-orbits of the indecomposable A-modules. As a first application to representations of quivers with automorphisms, it is shown in §6 that the representation theory of a modulated quiver (or a species) over \mathbb{F}_q is completely determined by the representation theory of the corresponding quiver over \mathbb{F}_q. We further prove that every finite-dimensional hereditary algebra over \mathbb{F}_q is Morita equivalent to some A^F, where A is the path algebra of a quiver Q over \mathbb{F}_q and F is the Frobenius morphism induced from an automorphism of Q. In §7 we establish a relation between almost split sequences of A and A^F. Section 8 is devoted to proving that the Auslander-Reiten (modulated) quiver of A^F is obtained by folding the Auslander-Reiten quiver of A. In §9 and §10, we present formulae for the number of indecomposable F-stable representations of an ad-quiver with a fixed dimension vector and generalize Kac’s theorem to cover all modulated quivers and their associated (symmetrizable) Kac–Moody algebras. Thus, we reobtain and generalize some results in [18, 8, 21].

Arising from the representation theory of semi-simple Lie algebras and algebraic groups, quasi-hereditary algebras introduced by E. Cline, B. Parshall and L. Scott [33, 4] are generally regarded as a Lie theory approach to the theory of finite-dimensional algebras. In [6, 7], a strong monomial basis property was discovered for quantized enveloping algebras of simply-laced Dynkin or cyclic type. To establish a similar property for a non-simply-laced Dynkin type, the theory developed in this paper will allow us to use some geometric methods from the quiver approach in the modulated quiver case. In a forthcoming paper, we shall complete our task on the strong monomial basis property for all quantized enveloping algebras of finite type.

Throughout, let q be a prime power, let \mathbb{F}_q be the finite field of q elements and let k be the algebraic closure $\overline{\mathbb{F}}_q$ of \mathbb{F}_q. For any $r \geq 1$, let \mathbb{F}_{q^r} denote the unique extension field of \mathbb{F}_q of degree r contained in $k = \overline{\mathbb{F}}_q$. All modules considered are left modules of finite dimension over the base field. If M is a module, $[M]$ denotes the class of modules isomorphic to M, i.e., the isoclass of M. For any field k, the notation $k^{m \times n}$ denotes the set of all $m \times n$ matrices over k.

2. \mathbb{F}_q-structures on vector spaces

An \mathbb{F}_q-structure on a vector space V over k is an \mathbb{F}_q-subspace V_0 of V viewed as a space over \mathbb{F}_q such that the canonical homomorphism $V_0 \otimes \mathbb{F}_q k \to V$ is an isomorphism. We shall always identify V with $V_0 \otimes k$ in the sequel.

Lemma 2.1. A k-space V has an \mathbb{F}_q-structure V_0 if and only if $$V_0 = V^F := \{ v \in V \mid F(v) = v \}$$ for some \mathbb{F}_q-linear isomorphism $F : V \to V$ satisfying

(a) $F(\lambda v) = \lambda^q F(v)$ for all $v \in V$ and $\lambda \in k$;
(b) for any $v \in V$, $F^n(v) = v$ for some $n > 0$.

Proof. If V has an \mathbb{F}_q-structure V_0, then we have $V = V_0 \otimes \mathbb{F}_q k$ and define $F : V \to V$ by sending $v \otimes \lambda$ to $v \otimes \lambda^q$. Clearly, $V_0 = V^F$ and F satisfies the conditions (a) and (b). The proof for the converse is given in [9, 3.5].
The map F is called a Frobenius map. By the lemma, we see that an \mathbb{F}_q-structure on V is equivalent to the existence of a Frobenius map. From the proof we see that if $F : V \to V$ is a Frobenius map, then there is a basis $\{v_i\}$ of V such that $F(\sum_i \lambda_i v_i) = \sum_i \lambda_i^q v_i$.

Corollary 2.2. If F and F' are Frobenius maps on a finite-dimensional space V, then $F' \circ F^{-1}$ is k-linear on V and there is a positive integer n such that $F^n = F'^n$.

Proof. Since $V = V^F \otimes_{\mathbb{F}_q} k = V^{F'} \otimes_{\mathbb{F}_q} k$ and V is finite dimensional, there is a positive integer n such that

$$V(\mathbb{F}_q^n) := V^F \otimes_{\mathbb{F}_q} \mathbb{F}_q^n = V^{F'} \otimes_{\mathbb{F}_q} \mathbb{F}_q^n.$$ Choose bases $\{v_i\}$ and $\{w_i\}$ for V^F and $V^{F'}$, respectively, and write $w_i = \sum_j x_{ij} v_i$ with $x_{ij} \in \mathbb{F}_q^n$. Now, one easily checks that $F^n = F'^n$ on $V(\mathbb{F}_q^n)$, and hence, on V. \[\square\]

Let $\mathcal{V}_{k,\mathbb{F}_q}$ be the category whose objects are vector spaces over k with fixed \mathbb{F}_q-structures and whose morphisms are linear maps $f : V \to W$ defined over \mathbb{F}_q, namely, $f(V_0) \subseteq W_0$. Clearly, if F_V and F_W are the Frobenius maps on V and W defining V_0 and W_0, respectively, then f is defined over \mathbb{F}_q if and only if $F_W \circ f = f \circ F_V$. In particular, if F and F' are two Frobenius maps on V, then any \mathbb{F}_q-linear isomorphism from V^F to $V^{F'}$ induces a k-linear isomorphism θ on V such that $\theta \circ F = F' \circ \theta$. In other words, up to isomorphism in $\mathcal{V}_{k,\mathbb{F}_q}$, the \mathbb{F}_q-structure on V is unique. Note that $\mathcal{V}_{k,\mathbb{F}_q}$ is an abelian category.

We shall represent the fixed \mathbb{F}_q-structure on a k-space V by a Frobenius map F_V. Thus, the objects V in $\mathcal{V}_{k,\mathbb{F}_q}$ are sometimes written as (V, F_V), and

$$\text{Hom}_{\mathcal{V}_{k,\mathbb{F}_q}}(V, W) = \{ f \in \text{Hom}_k(V, W) \mid F_W \circ f = f \circ F_V \}.$$ For $(V, F_V), (W, F_W) \in \text{Ob}(\mathcal{V}_{k,\mathbb{F}_q})$, there is an induced \mathbb{F}_q-linear map

$$F_{(V, W)} : \text{Hom}_k(V, W) \to \text{Hom}_k(V, W) ; f \mapsto F_{(V, W)}(f) = F_W \circ f \circ F_V^{-1}.$$ Note that, when V is infinite dimensional, $F(V, W)$ is not necessarily a Frobenius map on $\text{Hom}_k(V, W)$ in the sense of Lemma 2.1. However, we have the following.

Lemma 2.3. For $(V_1, F_1), (V_2, F_2) \in \text{Ob}(\mathcal{V}_{k,\mathbb{F}_q})$, let $F = F_{(V_1, V_2)}$ be defined as above. Then we have an \mathbb{F}_q-space isomorphism

$$\text{Hom}_{\mathbb{F}_q}(V_1^{F_1}, V_2^{F_2}) \cong \text{Hom}_{\mathcal{V}_{k,\mathbb{F}_q}}(V_1, V_2)^F.$$ In particular, if V_1 is finite dimensional, then F is a Frobenius map on $\text{Hom}_k(V_1, V_2)$.

Proof. The isomorphism is defined by sending f to $f \otimes 1$ with inverse defined by restriction. It is clear that F is an \mathbb{F}_q-linear map satisfying (2.1a). If V_1 is finite dimensional, F also satisfies (2.1b). Hence, F is a Frobenius map. \[\square\]

Remarks 2.4. (1) Every Frobenius map on a finite-dimensional k-space V induces the Frobenius map $F = F_{(V, V)}$ on the algebra $\text{End}_k(V)$ of all linear transformations on V. Clearly, F is an \mathbb{F}_q-algebra automorphism and induces an \mathbb{F}_q-algebra isomorphism $\text{End}_k(V)^F \cong \text{End}_{\mathbb{F}_q}(V^F)$.

(2) The restriction of F on $\text{End}_k(V)$ to the general linear group $GL(V)$ induces a Frobenius morphism on the connected algebraic group $GL(V)$ to which the following Lang-Steinberg theorem applies.
Let there is a Frobenius map F in terms of the corresponding representation π.

Let $\theta \in \text{End}_k(M)$ be the corresponding representation. We say that M, θ is F-stable with respect to π if for all $a \in A, \lambda \in k$.

The Frobenius morphism F_A on A is given by $F_A(a \otimes \lambda) = a \otimes \lambda^q$ for all $a \in A^F, \lambda \in k$.

Given a Frobenius morphism F_A on A, let

$$A^F := A^{F_A} = \{a \in A \mid F_A(a) = a\}$$

be the set of F_A-fixed points. Then A^F is an F-subalgebra of A, and $A = A^F \otimes k$.

Theorem 2.5 (Lang-Steinberg). Let G be a connected affine algebraic group and let F be a surjective endomorphism of G with a finite number of fixed points. Then the map $L : g \mapsto g^{-1}F(g)$ from G to itself is surjective.

3. ALGEBRAS WITH FROBENIUS MORPHISMS

Let A be a k-algebra with identity 1. We do not assume generally that A is finite dimensional. A map $F_A : A \rightarrow A$ is called a Frobenius morphism on A if it is a Frobenius map on the k-space, and it is also an F_q-algebra isomorphism sending 1 to 1. For example, for a finite-dimensional k-space V, $A = \text{End}_k(V)$ admits a Frobenius morphism $F_{(V,V)}$ induced from a Frobenius map F_V on V (see Remarks 2.4).

Given a Frobenius morphism F_A on A, let

$$A^F := A^{F_A} = \{a \in A \mid F_A(a) = a\}$$

be the set of F_A-fixed points. Then A^F is an F_q-algebra of A, and $A = A^F \otimes k$.

The Frobenius morphism F_A on A is given by $F_A(a \otimes \lambda) = a \otimes \lambda^q$ for all $a \in A^F, \lambda \in k$.

Let M be a finite-dimensional A-module and let $\pi = \pi_M : A \rightarrow \text{End}_k(M)$ be the corresponding representation. We say that M is F_A-stable (or simply F-stable) if there is an F_q-structure M_0 of M such that π induces a representation $\pi_0 : A^F \rightarrow \text{End}_{F_q}(M_0)$ of A^F. Clearly, by Lemma 2.1, M is F-stable if and only if there is a Frobenius map $F_M : M \rightarrow M$ such that

$$F_M(am) = F_A(a)F_M(m), \text{ for all } a \in A, m \in M.$$

In terms of the corresponding representation π, the F-stability of M simply means that that there is a Frobenius map F_M on M such that $\pi \circ F_A = F_M \circ \pi$. Thus, if M is an F-stable A-module with respect to F_M, then $M = M^F \otimes k$, $F_M(m \otimes \lambda) = n \otimes \lambda^q$ for all $m \in M^F, \lambda \in k$, and M^F is an A^F-module. Here, again for notational simplicity, we write M^F for M^{F_M}.

We shall also use, sometimes, the notation (M,F_M) for an F-stable module M.

Lemma 3.1. Let (M_1,F_1) and (M_2,F_2) be two F-stable A-modules. Then $M_1^{F_1} \cong M_2^{F_2}$ as A^F-modules if and only if $M_1 \cong M_2$ as A-modules. In particular, if $M_1 = M_2 = M$, then $M^{F_1} \cong M^{F_2}$ as A^F-modules.

Proof. Since $M_i = M_i^{F_i} \otimes_{F_q} k$ and $A = A^F \otimes_{F_q} k$, the lemma follows directly from the Noether-Deuring Theorem (see for example [5, p. 139]).

This result shows that, up to isomorphism, it does not matter which Frobenius maps (or F_q-structures) on M we shall work with when considering F-stable modules.

Let $\text{mod}^F(A)$ denote the category whose objects are F-stable modules $M = (M,F_M)$. The morphisms from (M,F_M) to (N,F_N) are given by homomorphisms $\theta \in \text{Hom}_A(M,N)$ such that $\theta \circ F_M = F_N \circ \theta$, that is, A-module homomorphisms compatible with their F_q-structures. It is easy to see that $\text{mod}^F(A)$ is an abelian F_q-category.

The next result allows us to embed a module category defined over a finite field into a category defined over the algebraic closure of the finite field.

1It should be understood that the F's in A^F and M^F are not the same.
Theorem 3.2. The abelian category mod^F_A is equivalent to the category mod^F-A^F of finite-dimensional A^F-modules.

Proof. Let $M = (M, F_M)$ be an object in mod^F_A. We define $\Phi(M) := M^F$ which is an A^F-module. Now let $\theta : (M_1, F_2) \to (M_2, F_2)$ be a morphism in mod^F_A. Since $\theta \circ F_1 = F_2 \circ \theta$, θ induces a map $\Phi(\theta) : M_1^F \to M_2^F$, which is obviously an A^F-module homomorphism. This gives a functor $\Phi : \text{mod}^F_A \to \text{mod}^F-A^F$.

Conversely, for each A^F-module X, we set $\Psi(X) = X \otimes_k k$ and define a Frobenius map

$$F_{\Psi(X)} : \Psi(X) \to \Psi(X); \quad x \otimes \lambda \mapsto x \otimes \lambda^q.$$

By defining $(a \otimes \lambda)(x \otimes \mu) = ax \otimes \mu \lambda$ for $a \otimes \lambda \in A^F \otimes k = A$ and $x \otimes \mu \in \Psi(X)$ and noting $F_A(a \otimes \lambda) = a \otimes \lambda^q$, we obtain an A-module structure on $\Psi(X)$, which is clearly F-stable. Further, for any morphism $f : X_1 \to X_2$ in mod^F_A, the map

$$\Psi(f) = f \otimes 1 \circ \Psi(X_1) \to \Psi(X_2)$$

is obviously an A-module homomorphism satisfying $\Psi(f) \circ F_1 = F_2 \circ \Psi(f)$, where $F_i = F_{\Psi(X_i)}$. Hence, we obtain a functor $\Psi : \text{mod}^F_A \to \text{mod}^F-A^F$.

From the construction, we easily see that $\Psi \Phi \cong 1_{\text{mod}^F_A}$ and $\Phi \Psi \cong 1_{\text{mod}^F-A^F}$, where $1_{\text{mod}^F_A}$ and $1_{\text{mod}^F-A^F}$ denote the identity functors of mod^F_A and mod^F-A^F, respectively. \square

Corollary 3.3. There is a one-to-one correspondence between isoclasses of indecomposable A^F-modules and isoclasses of indecomposable F-stable A-modules.

Let (M, F_M) be an F-stable A-module. For each submodule N of M (not necessarily an F_M-stable subspace), the image $F_M N$ is an A-submodule of M.

Proposition 3.4. Let (M, F_M) and (N, F_N) be two F-stable modules.

(a) Every submodule M' of M which is also an F_M-stable subspace is an F-stable A-module. In particular, both the radical $\text{Rad} M$ and socle $\text{Soc} M$ of M are F-stable modules.

(b) As F_q-spaces, we have $\text{Hom}_A(M, N)^F \cong \text{Hom}_{A^F}(M^F, N^F)$.

(c) We have F_q-algebra isomorphisms $\text{End}_A(M)^F \cong \text{End}_{A^F}(M^F)$ and

$$(\text{End}_A(M) / \text{Rad End}_A(M))^F \cong (\text{End}_{A^F}(M^F) / \text{Rad End}_{A^F}(M^F)).$$

Proof. (a) Since $F_M M' = M'$, the restriction of F_M to M' defines a Frobenius map on M'. So M' is an F-stable module, as the condition [3.0.1] is automatically satisfied. If S is a maximal (resp. simple) submodule of M, so is $F_M S$. Thus, both $\text{Rad} M$ and $\text{Soc} M$ are submodules which are F_M-stable (subspaces) and hence are F-stable modules.

(b) This is a consequence of the category equivalence given in Theorem 3.2.

(c) The first statement follows from (b) and Lemma 2.3. We now prove the last isomorphism. We first observe that if B is a semisimple algebra with Frobenius morphism F_B, then the fixed point algebra B^F is also semisimple. Since

$$(\text{End}_A(M) / \text{Rad End}_A(M))^F \cong (\text{End}_A(M))^F / (\text{Rad End}_A(M))^F,$$

it remains to prove that $$(\text{Rad End}_A(M))^F = \text{Rad}(\text{End}_A(M))^F.$$
The inclusion “⊇” follows from the semisimplicity of the right-hand side of the above isomorphism, while the inverse inclusion “⊆” follows from the fact that \((\operatorname{Rad} \operatorname{End}_A(M))^F\) is nilpotent. \qed

An \(A\)-module \(M\) is called \(F\)-periodic if there exists an \(F\)-stable \(A\)-module \(N\) such that \(M\) is isomorphic to a direct summand of \(N\) (denoted by \(M \mid N\)). We shall see in the next section that for a finite-dimensional algebra \(A\) with Frobenius morphism \(F_A\), every \(A\)-module is \(F\)-periodic. However, in Example 4.1, we shall see that, for an infinite-dimensional algebra, there are modules which are not \(F\)-periodic.

We end this section with the following example which is important in §6–10.

Example 3.5. Let \(Q = (Q_0, Q_1)\) be a finite quiver without loops, where \(Q_0\) resp. \(Q_1\) denotes the set of vertices resp. arrows of \(Q\). For each arrow \(\rho\) in \(Q_1\), we denote by \(h\rho\) and \(t\rho\) the head and the tail of \(\rho\), respectively. Let \(\sigma\) be an automorphism of \(Q\), that is, \(\sigma\) is a permutation on the vertices of \(Q\) and on the arrows of \(Q\) such that \(\sigma(h\rho) = a\sigma(\rho)\) and \(\sigma(t\rho) = t\sigma(\rho)\) for any \(\rho \in Q_1\). We further assume, following [29] 12.1.1, that \(\sigma\) is admissible, that is, there are no arrows connecting vertices in the same orbit of \(\sigma\) in \(Q_0\). We shall call the pair \((Q, \sigma)\) an admissible quiver, or simply an \(ad\)-quiver.

Let \(A := kQ\) be the path algebra of \(Q\) over \(k = \mathbb{F}_q\) which has identity \(1 = \sum_{i \in Q_0} e_i\), where \(e_i\) is the idempotent (or the length 0 path) corresponding to the vertex \(i\). Then \(\sigma\) induces a Frobenius morphism (cf. Lemma 2.1)

\[
(3.5.1) \quad F_{Q,\sigma} = F_{Q,\sigma_Q} : A \rightarrow A; \quad \sum_s x_s p_s \mapsto \sum_s x_s^p \sigma(p_s),
\]

where \(\sum_s x_s p_s\) is a \(k\)-linear combination of paths \(p_s\), and \(\sigma(p_s) = \sigma(p_1) \cdots \sigma(p_1)\) if \(p_s = p_1 \cdots p_1\) for arrows \(p_1, \ldots, p_1\) in \(Q_1\). We shall investigate the structure of \(A^F\) in §6.

4. Twisting modules with Frobenius maps

Let \(M\) be an \(A\)-module and let \(F_M : M \rightarrow M\) be a Frobenius map on the space \(M\). Note that \(M\) is not necessarily \(F\)-stable. We define its (external) Frobenius twist (with respect to the Frobenius map \(F_M\)) to be the \(A\)-module \(M^{[F_M]}\) such that \(M^{[F_M]} = M\) as vector spaces with \(F\)-twisted action

\[
a \ast m := F_M(F_A^{-1}(a)F_M^{-1}(m))\text{ for all }a \in A, m \in M.
\]

If \(\pi : A \rightarrow \operatorname{End}_k(M)\) and \(\pi^{[F_M]} : A \rightarrow \operatorname{End}_k(M^{[F_M]})\) denote the corresponding representations, then

\[
\pi^{[F_M]}(a) = F_{(M,M)}(\pi(F_A^{-1}(a))) = F_M \circ \pi(F_A^{-1}(a)) \circ F_M^{-1}\text{ for all }a \in A,
\]

where \(F_{(M,M)}\) is the induced Frobenius map on \(\operatorname{End}_k(M)\) (cf. Remarks 2.4).

Lemma 4.1. Up to isomorphism, the Frobenius twist \(M^{[F_M]}\) is independent of the choice of the Frobenius map \(F_M\) on \(M\).

Proof. If \(F_M\) and \(F'_M\) are two Frobenius maps on \(M\), then the linear isomorphism \(f := F'_M \circ F_M^{-1} : M \rightarrow M\) is clearly an \(A\)-module isomorphism from \(M^{[F_M]}\) to \(M^{[F'_M]}\). \qed
By the lemma, we shall denote $M^{[F_M]}$ and $\pi^{[F_M]}$ by $M^{[1]}$ and $\pi^{[1]}$, respectively. Similarly, we define M^{-1} to be the A-module given by $\pi^{-1} : A \to \text{End}_A(M)$, where

$$(4.1.1) \quad \pi^{-1}(a) = F_M^{-1} \circ \pi(F_A(a)) \circ F_M \text{ for all } a \in A.$$

Inductively, for each integer $s > 0$, we define $M^{[s]} = (M^{[s-1]})^{[1]}$ and $M^{-s} = (M^{-s+1})^{-1}$ with respect to the same given F_M.

Proposition 4.4. The Frobenius twist $(\)^{[1]}$ defines a category equivalence from $\text{mod-}\ A$ onto itself. In particular, if M and N are two A-modules, then for any given integer s, $M \cong N$ if and only if $M^{[s]} \cong N^{[s]}$.

Proof. Given two A-modules M and N with Frobenius maps F_M and F_N, respectively, and an A-module homomorphism $f : M \to N$, it can be checked by using the corresponding representations that the linear map $F_{(M,N)}(f)$ defined before Lemma [2.3] is in fact an A-module homomorphism from $M^{[1]}$ to $N^{[1]}$. We denote this morphism by $f^{[1]}$. Thus, we obtain a functor $(\)^{[1]} : \text{mod-}\ A \to \text{mod-}\ A$. This functor is clearly invertible with inverse $(\)^{-1}$.

If (M, F_M) is an F-stable A-module and N is a submodule of M (not necessarily an F_M-stable space), then the A-submodule $F_M N$ of M is called the “internal” Frobenius twist of N. Note that $F_M N$ is isomorphic to the (external) Frobenius twist $N^{[1]}$ of N with respect to any given Frobenius map F_N on N. This is deduced from the fact that the k-linear map $\varphi = F_M |_N \circ F_N^{-1} : N^{[1]} \to F_M N$ is an A-module isomorphism.

Proposition 4.3. Let M be an A-module with a Frobenius map F_M and let $M^{[1]}$ denote the Frobenius twist of M with respect to F_M.

(a) (M, F_M) is F-stable if and only if, as A-modules, $M^{[1]} = M$.

(b) $M^{[1]} \cong M$ if and only if there exists a Frobenius map F'_M on M such that M is F-stable with respect to F'_M, that is, $M^{[F'_M]} = M$ as A-modules.

Proof. The statement (a) follows directly from the definition, since (M, F_M) is F-stable if and only if $\pi \circ F_A = F_{(M,M)} \circ \pi$, which is equivalent to $\pi = \pi^{[F_M]}$.

We now prove (b). Since $M^{[1]} \cong M$, there exists an $f \in GL(M)$ such that $f \circ \pi^{[F_M]}(a) = \pi(a) \circ f$ for all $a \in A$. By Lang-Steinberg’s theorem, there exists $g \in GL(M)$ such that $g = g^{-1} \circ F(g)$, where

$$F : GL(M) \longrightarrow GL(M), \ h \longmapsto F_M \circ h \circ F^{-1}_M$$

is induced from F_M. Let $F'_M = g^{-1} \circ F_M \circ g : M \to M$. Then F'_M is a Frobenius map on M and, for all $a \in A$, we have

$$\pi^{[F'_M]}(a) = F'_M \circ \pi(F_A^{-1}(a)) \circ (F'_M)^{-1} = g^{-1} \circ F_M \circ g \circ \pi(F_A^{-1}(a)) \circ g^{-1} \circ F_M^{-1} \circ g$$

$$= f \circ F_M \circ \pi(F_A^{-1}(a)) \circ F_M^{-1} \circ f^{-1} = f \circ \pi^{[F_M]}(a) \circ f^{-1} = \pi(a),$$

that is, $M^{[F'_M]} = M$ as A-modules.

We now characterize F-periodic modules defined at the end of last section by Frobenius twisting.

Corollary 4.4. An A-module M is F-periodic if and only if $M^{[r]} \cong M$ for some integer r.
Frobenius map, thus \(M^{[r]} \cong M \) for all \(s \geq 1 \), it suffices to prove the case when \(M \) is indecomposable.

If \(M \) is \(F \)-periodic and indecomposable, then there is a \(F \)-stable \(A \)-module \((N,F_N)\) such that \(M \mid N \). Thus, \(F_N^n M \mid N \) for all \(n \geq 1 \). By the Krull-Remak-Schmidt theorem, there must be an integer \(r \geq 1 \) such that \(F_N^r M \cong M \), i.e., \(M^{[r]} \cong M \).

Conversely, suppose \(M^{[r]} \cong M \). Then

\[
N := M \oplus M^{[1]} \oplus \cdots \oplus M^{[r-1]}
\]

satisfies that \(N^{[1]} \cong N \). By Proposition 4.3(b), \(N \) is \(F \)-stable with respect to a Frobenius map, thus \(M \) is \(F \)-periodic. \(\square \)

Remarks 4.5. (1) For an \(F \)-periodic \(A \)-module \(M \), let \(r \) be the minimal integer such that \(M^{[r]} \cong M \). We shall call \(r \) the \(F \)-period of \(M \), denoted by \(p(M) = p_F(M) \).

Clearly, if \(M^{[s]} \cong M \), then \(p(M) \mid s \) and, by Lemma 4.1, \(p(M) \) is independent of the choice of the Frobenius map on \(M \).

(2) Using a similar argument as in the proof of Proposition 4.3(b), for an \(F \)-periodic \(A \)-module \(M \) with \(F \)-period \(r \), there is a Frobenius map \(F_M \) on \(M \) such that \(M^{[r]} = M \) as \(A \)-modules, where \(M^{[r]} \) is defined with respect to \(F_M \).

Proposition 4.6. Let \(A \) be finite dimensional. Then every \(A \)-module is \(F \)-periodic.

Proof. Let \(M \) be an \(A \)-module with a Frobenius map \(F = F_M \). By Lemma 2.1, there are \(k \)-basis \(\{a_1,a_2,\ldots,a_s\} \) of \(A \) and \(k \)-basis \(\{m_1,m_2,\ldots,m_t\} \) of \(M \) such that

\[
F_A(\sum_{i=1}^s x_i a_i) = \sum_{i=1}^s x_i^q a_i \quad \text{and} \quad F(\sum_{j=1}^t y_j m_j) = \sum_{j=1}^t y_j^q m_j
\]

for all \(a = \sum_{i=1}^s x_i a_i \in A \) and all \(m = \sum_{j=1}^t y_j m_j \in M \). Write \(a_i m_j = \sum_{l=1}^t z_{ijl} m_l \) with \(z_{ijl} \in k \). Since \(k = \mathbb{F}_q \), there is an integer \(n \) such that all \(z_{ijl} \)'s lie in \(\mathbb{F}_{q^n} \). Thus, \(F^n(a_i m_j) = a_i m_j \) for all \(i \) and \(j \). Consequently, we have

\[
F^n(\sum_{j} x_i y_j a_i m_j) = \sum_{i,j} x_i^q y_j^q F^n(a_i m_j) = \sum_{i,j} x_i^q y_j^q F^n(a_i m_j)
\]

This implies that \(M^{[n]} = M \) as \(A \)-modules. Hence \(M \) is \(F \)-periodic. \(\square \)

Recall that, for a path algebra \(A \) of a quiver \(Q \), an \(A \)-module can be identified as a representation \((V,\phi)\) of \(Q \), where \(V = \{V_i\}_{i \in Q_0} \) is a set of finite-dimensional vector spaces \(V_i \) and \(\phi = \{\phi_p\}_{p \in Q_1} \) is a set of linear transformations \(\phi_p : V_p \to V_{hp} \).

Example 4.7. Let \(Q \) be the quiver with two vertices 1 and 2 and with infinitely many arrows from 1 to 2 indexed by \(\rho_{ij} \) for all \(i \geq 1 \) and \(1 \leq j \leq i \). That is, they are

\[
\rho_{11}, \rho_{21}, \rho_{31}, \rho_{22}, \rho_{32}, \rho_{33}, \ldots
\]

Then the path algebra \(A = kQ \) is infinite dimensional and has the identity \(1 = e_1 + e_2 \). Consider the automorphism \(\sigma \) of \(Q \) fixing two vertices and cyclicly permuting each subset \(\{\rho_{ij}|1 \leq j \leq i\} \) of arrows for each fixed \(i \geq 1 \). Then \(\sigma \) induces a
Frobenius morphism $F = F_{Q,σ}$ on A (see Example 3.5). Define a representation V such that $V_1 = V_2 = k$ and that $φ_{p,1}$ is the identity on k, but $φ_{p,j} = 0$ for all $j \neq 1$. Then V is two dimensional and $V^{[r]} \neq V$ for all $r \geq 0$. Therefore, V is not F-periodic.

5. INDECOMPOSABLE F-STABLE MODULES

Let A be a k-algebra with a fixed Frobenius morphism F_A. The proof of Corollary 4.3 actually suggests a construction of indecomposable F-stable modules from F-periodic indecomposable ones.

Let M be F-periodic with F-period $r = p(M)$. In view of Remarks 4.3(2), there is a Frobenius map F_M on M such that $M^{[r]} = M$ as A-modules. Thus, by Proposition 4.2, $M, M^{[1]}, \ldots, M^{[r-1]}$ are pairwise non-isomorphic. Let

$$\tilde{M} = M \oplus M^{[1]} \oplus \cdots \oplus M^{[r-1]}$$

and define a Frobenius map $\tilde{F}_M : \tilde{M} \rightarrow \tilde{M}$ by

$$\tilde{F}_M(x_0, x_1, \ldots, x_{r-1}) = (F_M(x_{r-1}), F_M(x_0), \ldots, F_M(x_{r-2})).$$

Then (\tilde{M}, F_M) is F-stable. Thus, $\tilde{M}^F := \tilde{M}^{Fφ}$ is an A^F-module. By Lemma 3.1 we infer that, up to isomorphism, \tilde{M}^F is independent of the choice of F_M.

The following result generalizes Kac’s result [24, Lemma 3.4] for the path algebras of quivers.

Theorem 5.1. Maintain the notation above. Let M be an F-periodic indecomposable A-module with F-period r. Then (\tilde{M}, F_M) is indecomposable in $\text{mod}^F A$ and

$$\text{End}_{A^F}(\tilde{M}^F)/\text{Rad}(\text{End}_{A^F}(\tilde{M}^F)) \cong F_4^r.$$

Moreover, every indecomposable A^F-module is isomorphic to a module of the form \tilde{M}^F for some F-periodic indecomposable module M.

Proof. The Frobenius map $F_M : \tilde{M} \rightarrow \tilde{M}$ induces a Frobenius map $\tilde{F} = F_{(\tilde{M}, \tilde{M})}$ on $\text{End}_A(\tilde{M})$. By Proposition 3.4(c), we have an F_q-algebra isomorphism

$$\text{End}_{A^F}(\tilde{M}^F)/\text{Rad}(\text{End}_{A^F}(\tilde{M}^F)) \cong (\text{End}_A(\tilde{M})/\text{Rad}(\text{End}_A(\tilde{M})))^{\tilde{F}}.$$

For each $f \in \text{End}_A(\tilde{M})$, we write f in matrix form as

$$f = (f_{ji})_{r \times r} : \tilde{M} = \bigoplus_{i=0}^{r-1} M^{[i]} \rightarrow \bigoplus_{i=0}^{r-1} M^{[i]} = \tilde{M},$$

where $f_{ji} : M^{[i]} \rightarrow M^{[j]}$. Then $\tilde{F}(f) = (g_{ji})$ with $g_{ji} = f_{j-1,i-1}^{[1]}$, where the indices are integers modulo r. In particular, if $\tilde{F}(f) = f$, i.e., $f \in \text{End}_A(\tilde{M})^{\tilde{F}}$, then $f_{ji} = f_{j-1,i-1}^{[1]}$ for all $0 \leq i, j \leq r - 1$. Since $M, M^{[1]}, \ldots, M^{[r-1]}$ are pairwise non-isomorphic indecomposable A-modules, we have an algebra isomorphism

$$\text{End}_A(\tilde{M})/\text{Rad}(\text{End}_A(\tilde{M})) \longrightarrow \prod_{i=0}^{r-1} \text{End}_A(M^{[i]})/\text{Rad}(\text{End}_A(M^{[i]}))$$

$$\tilde{f} = (\tilde{f}_{ji}) \longmapsto (\tilde{f}_{00}, \tilde{f}_{11}, \ldots, \tilde{f}_{r-1,r-1}).$$
Since \(\text{End}_A(M[i])/\text{Rad} (\text{End}_A(M[i])) \cong k \) for each \(0 \leq i \leq r - 1 \), we obtain
\[
\text{End}_A(\hat{M})/\text{Rad} (\text{End}_A(\hat{M})) \cong k \times \cdots \times k =: U.
\]

The Frobenius map \(\hat{F} \) on the left-hand side induces a Frobenius map \(\tilde{F} \) on \(U \) given by
\[
\tilde{F}(x_0, x_1, \ldots, x_{r-1}) = (x_0^q, x_1^q, \ldots, x_{r-2}^q).
\]

Hence,
\[
\text{End}_{AF} (\hat{M})/\text{Rad}(\text{End}_{AF} (\hat{M})) \cong U^F = \mathbb{F}_{q^r}.
\]

Conversely, let \(X \) be an indecomposable \(AF \)-module such that
\[
\text{End}_{AF}(X)/\text{Rad} (\text{End}_{AF}(X)) \cong \mathbb{F}_{q^r}.
\]

Then \(X_k := X \otimes_{\mathbb{F}_q} k \) is an \(F \)-stable \(A \)-module with the Frobenius map \(F := FX_k \) defined by
\[
F(x \otimes \lambda) = x \otimes \lambda^q \text{ for } x \otimes \lambda \in X \otimes_{\mathbb{F}_q} k.
\]

Moreover, we have a decomposition
\[
X_k = M_1 \oplus \cdots \oplus M_r,
\]
where \(M_1, \ldots, M_r \) are pairwise non-isomorphic indecomposable \(A \)-modules. The \(F_A \)-stability of \(X_k \) implies that
\[
FM_1 \oplus \cdots \oplus FM_r = FX_k = X_k = M_1 \oplus \cdots \oplus M_r.
\]

Thus, the set \(\Omega := \{M_1, \ldots, M_r\} \) is \(F \)-stable (up to isomorphism). We claim that \(\Omega \) contains only one \(F \)-orbit. Let \(\Omega_1, \ldots, \Omega_m \) be the orbits of \(\Omega \). For each \(1 \leq j \leq m \), let
\[
L_j = \bigoplus_{N \in \Omega_j} N.
\]

Then
\[
L_j \cong N_j \oplus FN_j \oplus \cdots \oplus F^{r_j-1}N_j,
\]
where \(N_j \in \Omega_j \) and \(r_j = |\Omega_j| \). Note that \(F^{r_j}N_j \cong N_j \). Let \(F_j \) be a Frobenius map on \(N_j \). Then \(FN_j \) is isomorphic to the Frobenius twist \(N_j^{[1]} \) of \(N_j \) with respect to \(F_j \). Hence, we have \(N_j^{[r_j]} \cong N_j \) and
\[
L_j \cong N_j \oplus N_j^{[1]} \oplus \cdots \oplus N_j^{[r_j-1]} \cong L_j^{[1]}.
\]

Then, by Proposition 4.3(b), there is a Frobenius map \(F'_j \) on \(L_j \) such that \(L_j \) is \(F \)-stable with respect to \(F'_j \). These Frobenius maps \(F'_j \) induce a Frobenius map \(F' \) on \(\bigoplus_{j=1}^m L_j \) defined by
\[
F'(v_1, \ldots, v_m) = (F'_1(v_1), \ldots, F'_m(v_m)).
\]

By Lemma 3.1, the isomorphism \(X_k \cong \bigoplus_{j=1}^m L_j \) implies that
\[
X = X_k^F \cong (\bigoplus_{j=1}^m L_j)^{F'} = \bigoplus_{j=1}^m L_j^{F'}.
\]

Since \(X \) is indecomposable, we must have \(m = 1 \) and the required isomorphism
\[
X_k \cong L_1 \cong N_1 \oplus N_1^{[1]} \oplus \cdots \oplus N_1^{[r-1]}.
\]

\(\square \)
Corollary 5.2. If A is finite dimensional, then there is a one-to-one correspondence between the isoclasses of indecomposable A^F-modules and the F-orbits of the isoclasses of indecomposable A-modules.

A finite-dimensional algebra B over a field is called representation-finite if there are only finitely many isoclasses of (finite-dimensional) indecomposable B-modules. Theorem 5.1 and Proposition 4.6 imply immediately the following (cf. [15] and [23]).

Corollary 5.3. Let A be finite dimensional and let F_A be a Frobenius morphism on A. Then, A is representation-finite if and only if A^F is also.

An A^F-module X is called absolutely indecomposable if $X \otimes k$ is an indecomposable A-module.

Corollary 5.4. An A^F-module X is absolutely indecomposable if and only if there is an F-stable indecomposable A-module $M = (M, F)$ such that $X \cong M^F$.

6. Finite-dimensional hereditary algebras

The first application of our theory is to show that every finite-dimensional hereditary (basic) algebra over a finite field is isomorphic to the F fixed point algebra of the path algebra of a finite ad-quiver (see Example 3.5). Thus, the representation theory of a finite dimensional hereditary algebra is completely determined by the counterpart of the corresponding ad-quivers.

We first recall the notion of modulated quivers (cf. [10] and [2, 4.1.9]).

Definition 6.1. A valued graph is a graph without loops together with a positive integer d_x for each vertex x and a pair of positive integers $(x c^y_x, y c^z_y)$ for each edge $x \xrightarrow{\gamma} y$ satisfying $x c^y_x d_y = y c^z_y d_x$. A valued graph together with an orientation is called a valued quiver, and a valued quiver is called simple if it has no parallel arrows. (Thus, opposite arrows between two vertices are allowed in a simple-valued quiver.) A modulated M of a valued quiver consists of an assignment of a division ring D_x to each vertex x, and a D_x-D_x-bimodule M_ρ to each arrow $\rho : x \rightarrow y$ with the underlying edge $x \xrightarrow{\gamma} y$ satisfying

1. $\operatorname{Hom}_{D_y}(M_\rho, D_y) \cong \operatorname{Hom}_{D_x}(M_\rho, D_x)$,
2. $\dim_{D_y}(M_\rho) = x c^y_x$, $\dim_{D_x}(M_\rho) = y c^z_y$.

Finally, a modulated quiver $Q = (\Gamma, M)$ consists of a valued quiver Γ and a modula tion M (of Γ). In case all the division rings D_x contain a common central field K such that the dimensions of all D_x over K are finite and that K operates centrally on each bimodule M_ρ, we call Q a K-modulated quiver or a K-species (cf. [15] and [10]).

A modulated quiver is simple if its underlying quiver is simple.

Let $Q = (\Gamma, M)$ be a modulated quiver with Γ_0 (resp. Γ_1) the set of vertices (resp. arrows) of Γ and $M = \{D_x\}_{x \in \Gamma_0}, \{M_\rho\}_{\rho \in \Gamma_1}$). Let $R = \bigoplus_{x \in \Gamma_0} D_x$ and $M = \bigoplus_{\rho \in \Gamma_1} M_\rho$. Then M is a natural R-R-bimodule. The R-algebra $T(Q) := \bigoplus_{n \geq 0} M^\otimes n$, where $M^\otimes 0 = R, M^\otimes n = 0 \otimes R \cdots \otimes R M$, is defined.

2If we follow the definition given in [2, 4.1.9], then $M_\rho = \begin{cases} x M^\gamma_y, & \text{if } \rho = y \xrightarrow{\gamma} x, \\
y M^\rho_x, & \text{if } \rho = x \xrightarrow{\gamma} y. \end{cases}$
is called the path (or tensor) algebra of Q. Thus, a non-zero tensor $x_n \otimes \cdots \otimes x_1$ with $x_i \in M_{\rho_i}$ implies that $\rho_n \cdots \rho_1$ is a path in Γ.

For a modulated quiver $Q = (\Gamma, M)$, let $\overline{Q} = (\overline{\Gamma}, \bar{M})$ be the associated simple modulated quiver obtained by summing up the valuations and bimodules over parallel arrows. More precisely, $\overline{\Gamma}$ is a simple-valued quiver defined by setting $\overline{\Gamma}_0 = \Gamma$, $\overline{\Gamma}_1 = \{ \overline{\rho} : x \to y \}$, where $\overline{\rho} := \{ \rho \in \Gamma | \rho = x, h\rho = y \}$, and setting the valuation for the arrow $\overline{\rho} : x \to y$ to be $(\epsilon_{\overline{\rho}}, \epsilon_{\overline{\rho}}')$ where $\epsilon_{\rho} = \sum_{\rho \in \overline{\rho}} x_{\rho}^e$ and $\epsilon_{\overline{\rho}}' = \sum_{\rho \in \overline{\rho}} y_{\overline{\rho}} e^2$. The modulation $\overline{M} = (\{ D_x \}_{x \in \overline{\Gamma}_0}, \{ M_\rho \}_{\rho \in \overline{\Gamma}_1})$ is defined by setting $M_\rho = \bigoplus_{\rho \in \overline{\rho}} M_\rho$.

Definition 6.2. Let $Q = (\Gamma, M)$ and $Q' = (\Gamma', M')$ be two modulated quivers. We say that $Q \cong Q'$ if there exists a quiver isomorphism $\tau : \Gamma \to \Gamma'$ such that (1) $D_x \cong D_{\tau(x)}'$ as division rings, and (2) $M_\rho \cong M'_{\tau(\rho)}$ as bimodules via (1).

Clearly, if $Q \cong Q'$, then we have algebra isomorphism $T(Q) \cong T(Q')$.

We now construct a modulated quiver from an ad-quiver. Given a finite ad-quiver (Q, σ), let $I = \Gamma_0$ and Γ_1 denote the set of σ-orbits in Q_0 and Q_1, respectively. Thus, we obtain a new quiver $\Gamma = (\Gamma_0, \Gamma_1)$. For each arrow $\rho : i \to j$ in Γ, define

\[
\varepsilon_{\rho} = \# \text{ (arrows in } \rho), \quad d_{\rho} = \varepsilon_{\rho}/\varepsilon_i, \quad \text{and } d'_{\rho} = \varepsilon_{\rho}/\varepsilon_j,
\]

where $\varepsilon_{\kappa} = \# \{ \text{vertices in the } \sigma\text{-orbit } \kappa \}$ for $\kappa \in I$. The quiver Γ together with the valuation $\{ d_{\rho} \}_{\rho \in \Gamma_1}$ defines a valued quiver $\Gamma = (\Gamma_0, \Gamma_1, \sigma)$. Clearly, each valued quiver can be obtained in this way from an ad-quiver.

Using the Frobenius morphism $F = F_{Q, \sigma}$ on A defined in (3.5.1), we can attach naturally to Γ an F_q-modulation to obtain an F_q-modulated quiver (or an F_q-species) as follows: for each vertex $i \in I$ and each arrow ρ in Γ, we fix $i_0 \in i$, $\rho_0 \in \rho$, and consider the F_A-stable subspaces of A

\[
A_i = \bigoplus_{s=0}^{\varepsilon_i-1} k e_i = \bigoplus_{s=0}^{\varepsilon_i-1} k e_{\sigma^s(i_0)} \quad \text{and} \quad A_\rho = \bigoplus_{\rho_0 \in \rho} k \sigma^t(\rho_0),
\]

where ε_i denotes the idempotent corresponding to the vertex i. Then

\[
A_i^F = \{ \sum_{s=0}^{\varepsilon_i-1} x^s e_{\sigma^s(i_0)} | x \in k, x^{\varepsilon_i} = x \} \quad \text{and} \quad A_{\rho}^F = \{ \sum_{t=0}^{\varepsilon_{\rho}-1} x^t \sigma^t(\rho_0) | x \in k, x^{\varepsilon_{\rho}} = x \}.
\]

Further, the algebra structure of A induces an $A_i^F-A_{\rho}^F$-bimodule structure on A_{ρ}^F for each arrow $\rho : i \to j$ in Γ. Thus, we obtain an F_q-modulation $M = M(Q, \sigma) := (\{ A_i^F \}_i, \{ A_{\rho}^F \}_\rho)$ over the valued quiver Γ. We shall denote the F_q-modulated quiver defined above by

\[
M_{Q, \sigma} = M_{Q, \sigma, q} = (\Gamma, M).
\]

Let $T(M_{Q, \sigma})$ be the tensor algebra of the modulated quiver $M_{Q, \sigma}$. Thus, by definition, $T(M_{Q, \sigma}) = \bigoplus_{n \geq 0} M \otimes_n$, where $M = \bigoplus_{\rho \in \Gamma_1} A_{\rho}^F$ is viewed as an R-R-bimodule with $R = \bigoplus_{i \in I} A_i^F$ and $\otimes = \otimes_R$. If, for each σ-orbit ρ of a path $\rho_n \cdots \rho_1$ in Q, we set $A_{\rho}^F = \bigoplus_{\rho \in \rho} k \rho$. Then

\[
A_{\rho}^F \cong A_{\rho_n}^F \otimes \cdots \otimes A_{\rho_2}^F \otimes A_{\rho_1}^F,
\]

where ρ_i is the σ-orbit of ρ_i and $F_i = A_{\rho_i}^F$. Since $A^F = \bigoplus_{\rho} A_{\rho}^F$, it follows that the fixed point algebra A^F is isomorphic to the tensor algebra $T(M_{Q, \sigma})$. Thus,
A^F-modules can be identified with representations of the modulated quiver $\mathcal{M}_{Q,\sigma}$ (see [10]). The above observation together with Theorem 3.2 implies the following.

Proposition 6.3. Let (Q, σ) be an ad-quiver with path algebra $A = kQ$ and induced Frobenius morphism $F = F_{Q,\sigma}$. Let $\mathcal{M}_{Q,\sigma}$ be the associated \mathbb{F}_q-modulated quiver defined as above.

(a) We have an algebra isomorphism $A^F \cong T(\mathcal{M}_{Q,\sigma})$. Hence the categories mod^F-A and $\text{mod}^T(\mathcal{M}_{Q,\sigma})$ are equivalent.

(b) If Q has no oriented cycles, then the fixed point algebra A^F is a finite-dimensional hereditary basic algebra.

Corollary 6.4. Maintain the notation above and let $r \geq 1$ be an integer. Then, the ad-quiver (Q, σ^r) defines an \mathbb{F}_{q^r}-modulated quiver \mathcal{M}_{Q,σ^r}, whose tensor algebra is isomorphic to the \mathbb{F}_{q^r}-algebra $A^F \otimes_{\mathbb{F}_q} \mathbb{F}_{q^r}$.

Proof. Clearly, $F_{Q,\sigma^r} = F_{Q,\sigma^q}^r = F^r$. By Lemma 2.1 we have $A = A^F \otimes_{\mathbb{F}_q} \mathbb{F}_q$ and $F(a \otimes \lambda) = a \otimes \lambda^q$. Then $A^{F^r} = A^F \otimes_{\mathbb{F}_q} \mathbb{F}_{q^r}$. Now, the isomorphism follows from Proposition 6.3(a).

Note that for $r > 1$, the modulated quiver \mathcal{M}_{Q,σ^r} is different from the modulated quivers \mathcal{M}_{Q,σ^q} and \mathcal{M}_{Q,σ^q}. The former has the same underlying valued quiver as \mathcal{M}_{Q,σ^q}, but different base field, while the latter has the same base field but different underlying valued quiver (if $\sigma \neq 1$).

Our next result shows that the converse of Proposition 6.3(b) is also true.

Theorem 6.5. Let B be a finite-dimensional hereditary basic algebra over \mathbb{F}_q. Then there is an ad-quiver (Q, σ) such that B is isomorphic to $(kQ)^{F_{Q,\sigma}}$.

Proof. Let $A = B \otimes k$ and define $F : A \rightarrow A$ by $F(b \otimes \lambda) = b \otimes \lambda^q$. Clearly, F is a Frobenius morphism on the k-algebra A and $A^F = B$. Since B is a finite-dimensional hereditary basic algebra, it follows that so is A, and B is isomorphic to the tensor (or path) algebra of the associated modulated Ext-quiver Q_B (see [13] Theorem 8.5.2) or [2, p. 104]). In particular, we have an algebra isomorphism

$$\varphi : B \sim \text{gr } B, \text{ where } \text{gr } B = \bigoplus_{i \geq 0} \text{Rad}^i B / \text{Rad}^{i+1} B.$$

Since $\text{Rad } A = (\text{Rad } B \otimes k) = (\text{Rad } B) \otimes k$ (see, e.g., [3] p. 146)), we have by induction $\text{Rad}^i A = (\text{Rad}^i B) \otimes k$ for all $i \geq 1$. Thus, the isomorphism φ induces a k-algebra isomorphism

$$\tilde{\varphi} : A = B \otimes k \sim \text{gr } A = \text{gr } B \otimes k.$$

Let \tilde{F} denote the Frobenius morphism on $\text{gr } A$ induced from F. Clearly, \tilde{F} stabilizes each direct summand $\text{Rad}^i A / \text{Rad}^{i+1} A$ of $\text{gr } A$ and $B = A^F \cong (\text{gr } A)^{F}$. We now prove that $(\text{gr } A, \tilde{F})$ defines an ad-quiver (Q, σ) such that $(\text{gr } A)^{\tilde{F}} \cong (kQ)^{F_{Q,\sigma}}$. Suppose

$$A / \text{Rad } A = k\bar{e}_1 \oplus \cdots \oplus k\bar{e}_n,$$

where e_i are primitive orthogonal idempotents of A with $1 = e_1 + \cdots + e_n$. Since the $F(e_i)$'s form a complete set of primitive orthogonal idempotents of A, it follows that there is a permutation σ and an invertible element $u \in A$ such that $F(e_i) = ue_{\sigma i}u^{-1}$. Thus, $\tilde{F}(\bar{e}_i) = \bar{e}_{\sigma i}$ for all i.

Let $Q_0 = \{1, 2, \ldots, n\}$ and I the set of σ-orbits. Putting $f_i = \sum_{e \in I} e_i$ for each $i \in I$, we have

$$\text{Rad} A / \text{Rad}^2 A = \bigoplus_{i,j \in I} f_i(\text{Rad} A / \text{Rad}^2 A)f_j,$$

where

$$f_i(\text{Rad} A / \text{Rad}^2 A)f_j = \tilde{f}_i(\text{Rad} A / \text{Rad}^2 A)f_j = \bigoplus_{v \in \bar{e}_i(\text{Rad} A / \text{Rad}^2 A)\bar{e}_j} ,$$

Clearly, \bar{F} stabilizes each summand $f_i(\text{Rad} A / \text{Rad}^2 A)f_j$ and $\bar{F}(V_{ij}) = V_{\sigma i, \sigma j}$, where

$$V_{ij} = \bar{e}_i(\text{Rad} A / \text{Rad}^2 A)\bar{e}_j.$$

Fix i, j and let s be the smallest integer such that $\sigma^s i = i$ and $\sigma^s j = j$. Since \bar{F}^s stabilizes V_{ij}, we can choose a k-basis $v_{1}, \ldots, v_{t_{ij}}$ of V_{ij} such that $\bar{F}^s(v_{a}) = v_{a}$ for all $1 \leq a \leq t_{ij}$. Thus, we obtain a k-basis

$$\{v_{1}, \ldots, v_{t_{ij}}, \bar{F}(v_{1}), \ldots, \bar{F}(v_{t_{ij}}), \ldots, \bar{F}^{s-1}(v_{1}), \ldots, \bar{F}^{s-1}(v_{t_{ij}})\}$$

for the \bar{F}-stable space $\bigoplus_{a=0}^{s-1} V_{\sigma^a i, \sigma^a j}$. Clearly, such a basis can be constructed for every σ-orbit of the set $\{(i, j) \mid i \in I, j \in J\}$. Thus, we obtain a basis $\{v^{ij}_{a}\}_{i,j,a}$ for $f_i(\text{Rad} A / \text{Rad}^2 A)f_j$, and hence for $\text{Rad} A / \text{Rad}^2 A$, which is \bar{F}-stable, i.e., $\{\bar{F}(v^{ij}_{a})\}_{i,j,a} = \{v^{ij}_{a}\}_{i,j,a}$. If Q_1 is the set of arrows $\rho^{ij}_a : i \rightarrow j$ indexed by the basis elements v^{ij}_{a}, then \bar{F} induces a permutation τ on Q_1.

So we have obtained an ad-quiver (Q, τ). The standard k-algebra isomorphism $\psi : kQ \rightarrow \text{gr} A$ sending i to \bar{e}_i and ρ^{ij}_a to v^{ij}_{a} is compatible with the Frobenius morphisms \bar{F} and $F_{Q, \tau}$, that is, $\psi \circ F_{Q, \tau} = \bar{F} \circ \psi$. Consequently, we obtain

$$B \cong (\text{gr} A)^{\bar{F}} \cong (kQ)^{F_{Q, \tau}}.$$

\[\square\]

Corollary 6.6. Every finite-dimensional hereditary algebra over a finite field is Morita equivalent to the F-fixed point algebra of the path algebra of an ad-quiver.

Remarks 6.7. (1) If we identify A^F_q and A^F_q' defined in [6.2.2] with $\mathbb{F}_{q^s_1}$ and $\mathbb{F}_{q^r_1}$ via

$$\sum_{i \in I} x_i e_i \rightarrow x_{i_0} \text{ and } \sum_{p \in \rho} y_p \rho \rightarrow y_{\rho_0},$$

respectively, where $i_0 \in I$ and $j_0 \in J$ are fixed, then, for an arrow $\rho : i \rightarrow j$, the induced $\mathbb{F}_{q^r_1}$-$\mathbb{F}_{q^s_1}$-bimodule structure on $A_{\rho} = \mathbb{F}_{q^\rho}$ is not necessarily the natural bimodule $\mathbb{F}_{q^{\rho}_1}(\mathbb{F}_{q^s_1})\mathbb{F}_{q^r_1}$ induced by the subfield structure. This is because, for $r, s \geq 1$, the \mathbb{F}_{q^ρ}-algebra isomorphism

$$\mathbb{F}_{q^r} \otimes_{\mathbb{F}_q} \mathbb{F}_{q^s} \cong \mathbb{F}_{q^m} \times \cdots \times \mathbb{F}_{q^{m}},$$

means that there are exactly d non-isomorphic simple \mathbb{F}_{q^r}-\mathbb{F}_{q^s}-bimodules. Here d and m denote the greatest common divisor and the least common multiple of r, s, respectively. More precisely, for $0 \leq r \leq \varepsilon_1 - 1$ and $0 \leq s \leq \varepsilon_2 - 1$ with $\rho_0 : \sigma^r(i_0) \rightarrow \sigma^s(j_0)$, the induced $\mathbb{F}_{q^r_1}$-$\mathbb{F}_{q^s_1}$-bimodule structure on $A_{\rho} = \mathbb{F}_{q^\rho}$ is given by

$$y \cdot z \cdot x = y^{\rho_0 \cdot z} x^{\rho_0} \text{ for } x \in \mathbb{F}_{q^r_1}, y \in \mathbb{F}_{q^j_1}, z \in \mathbb{F}_{q^s_1},$$
while the natural bimodule structure corresponds to the case when \(r = s = 0 \). These two bimodule structures on \(F_{q,r} \) are not necessarily isomorphic.

(2) The \(F_q \)-modulated quivers studied in [19] and [21] involve only the natural bimodules \(\pi_q(F_{q,r})F_{q,s} \), where \(r, s, n \geq 1, r \mid n \) and \(s \mid n \). These will be called natural modulated quivers below. Note that the natural \(F_{q,r}-F_{q,s} \)-bimodule \(\pi_q(F_{q,r})F_{q,s} \) is isomorphic to the direct sum of \(\frac{n}{m} \) copies of the natural simple bimodule \(\pi_q(F_{q,m})F_{q,s} \), where \(m \) is the least common multiple of \(r \) and \(s \). Though non-isomorphic bimodules involved in two modulated quivers could result in isomorphic tensor algebras, the following example shows that not every finite dimensional hereditary basic algebra over \(F_q \) arises from a natural modulated quiver.

Example 6.8. Let \(\Gamma \) denote the valued quiver

![Diagram of a valued quiver](Image)

with \((\varepsilon_a, \varepsilon_b, \varepsilon_c) = (1, 2, 2)\), \((d_\rho, d_\tau) = (1, 2)\), and \((d_\rho, d_\tau) = (2, 2)\). Then the pair of natural bimodules \(\pi_q(F_{q,2})\pi_{q,2} \) and \(\pi_q(F_{q,2})\pi_{q,2} \), together with the valued quiver \(\Gamma \), defines the natural \(F_q \)-modulated quiver \(\mathfrak{M} \). Let \(M \) denote the natural bimodule \(\pi_q(F_{q,2})\pi_{q,2} \) and let \(M' = F_{q,2} \) (as \(F_q \)-vector spaces) denote the \(F_{q,2}-F_{q,2} \)-bimodule given by \(x \cdot y \cdot z = x^q y z \). It is easy to see that \(M \) and \(M' \) are not isomorphic as \(F_{q,2}-F_{q,2} \)-bimodules. The pair of bimodules \(\pi_q(F_{q,2})F_{q,1} \) and \(M \oplus M' \) also defines a new \(F_q \)-modulated quiver \(\mathfrak{N} \) whose tensor algebra \(T(\mathfrak{N}) \) is not isomorphic to the tensor algebra \(T(\mathfrak{M}) \) of \(\mathfrak{M} \), since \(T(\mathfrak{M}) \otimes_{F_q} k \) and \(T(\mathfrak{M}') \otimes_{F_q} k \) are respectively isomorphic to the path algebras of the following quivers:

![Diagram of bimodules](Image)

7. **Almost split sequences**

The Auslander-Reiten theory is one of the fundamental tools in the study of representations of algebras (see, e.g., [11]). This and the next sections are devoted to establishing a relation between the Auslander-Reiten theories of \(A \) and its fixed point algebra \(A^F \).

We briefly review the general theory. Let \(A \) be a finite-dimensional algebra over an arbitrary field \(k \). A morphism \(\varphi : L \to M \) in \textbf{mod-}\(A \) is called minimal right almost split if

(a) \(\varphi \) is not a split epimorphism,
(b) any morphism \(X \to M \) which is not a split epimorphism factors through \(\varphi \),
(c) any morphism \(f : L \to L \) satisfying \(\varphi = \varphi f \) is an isomorphism.

It is easy to see that, if \(\varphi : L \to M \) is a minimal right almost split morphism, then \(M \) is indecomposable.

A minimal left almost split morphism is defined dually.

A short exact sequence \(0 \to N \xrightarrow{\psi} L \xrightarrow{\varphi} M \to 0 \) is called an almost split sequence if \(\psi \) is minimal right almost split, or equivalently, if \(\psi \) is minimal left almost split.

(a) There exists a unique, up to isomorphism, minimal right almost split morphism $\varphi: L \to M$. If, moreover, M is not projective, then the sequence

$$0 \to \text{Ker} \varphi \to L \xrightarrow{\varphi} M \to 0$$

is an almost split sequence.

(b) There exists a unique, up to isomorphism, minimal left almost split morphism $\psi: M \to L$. If, moreover, M is not injective, then the sequence

$$0 \to M \xrightarrow{\psi} L \to \text{Coker} \psi \to 0$$

is an almost split sequence.

Given an almost split sequence $0 \to N \xrightarrow{\psi} L \xrightarrow{\varphi} M \to 0$, the module N (resp. M) is uniquely (up to isomorphism) determined by M (resp. N). We write $\tau_A M = N$ or $N = \tau_A^{-1} M$. The $\tau_A =: \tau$ is called the Auslander-Reiten translation of A, which indeed admits the following description using the transpose and the dual (see [1 Chap. IV, V]). Let \mathcal{P} and \mathcal{I} be the ideals of $\text{mod} \cdot A$ (in the sense of [17, p. 16]) defined respectively by

$$\mathcal{P}(X,Y) = \{ f : X \to Y | f \text{ factors through a projective } A \text{-module} \}$$

and

$$\mathcal{I}(X,Y) = \{ f : X \to Y | f \text{ factors through an injective } A \text{-module} \},$$

where $X,Y \in \text{mod} \cdot A$. The factor categories of $\text{mod} \cdot A$ by \mathcal{P} and \mathcal{I} are denoted by $\text{mod} \cdot A$ and $\text{mod} \cdot A^{\text{op}}$, respectively. Let $M \in \text{mod} \cdot A$ and let

$$P_1 \xrightarrow{f} P_0 \to M \to 0$$

be a minimal projective presentation of M. Applying $\text{Hom}_A(\cdot, A)$, we get a morphism

$$f^* := \text{Hom}_A(f, A) : \text{Hom}_A(P_0, A) \to \text{Hom}_A(P_1, A)$$

in $\text{mod} \cdot A^{\text{op}}$. Thus, we obtain an A^{op}-module $\text{Coker} f^*$ which is called the transpose of M and denoted by $Tr M$. In general, Tr does not give rise to a functor from $\text{mod} \cdot A$ to $\text{mod} \cdot A^{\text{op}}$. However, Tr induces a functor $\text{Tr} : \text{mod} \cdot A \to \text{mod} \cdot A^{\text{op}}$ such that the compositions $\text{mod} \cdot A \xrightarrow{\text{Tr}} \text{mod} \cdot A^{\text{op}} \xrightarrow{\text{Tr}} \text{mod} \cdot A$ and $\text{mod} \cdot A^{\text{op}} \xrightarrow{\text{Tr}} \text{mod} \cdot A \xrightarrow{\text{Tr}} \text{mod} \cdot A^{\text{op}}$ are isomorphic to the identity on $\text{mod} \cdot A$ and $\text{mod} \cdot A^{\text{op}}$, respectively. On the other hand, the duality $D = \text{Hom}_A(\cdot, A) : \text{mod} \cdot A \to \text{mod} \cdot A^{\text{op}}$ induces a duality $D : \text{mod} \cdot A \to \text{mod} \cdot A^{\text{op}}$ such that the composition $D \text{Tr} : \text{mod} \cdot A \to \text{mod} \cdot A^{\text{op}}$ is an equivalence with inverse equivalence $\text{Tr} D : \text{mod} \cdot A \to \text{mod} \cdot A^{\text{op}}$. Then, for each indecomposable non-projective A-module M, we have $\tau M \cong D \text{Tr} M$, and for each indecomposable non-injective A-module N, we have $\tau^{-1} N \cong \text{Tr} D N$.

For any two A-modules $M = \bigoplus_i M_i$ and $N = \bigoplus_j N_j$, where M_i and N_j are indecomposable, we define the radical of $\text{Hom}_A(M,N)$ by

$$\text{Rad}_A(M,N) = \{(f_{ji}) : M \to N | f_{ij} : M_i \to N_j \text{ is not an isomorphism for all } i,j \}.$$

In fact, $\text{Rad}_A(\cdot, \cdot)$ is an ideal of $\text{mod} \cdot A$. Inductively, for each $n > 1$, the n-th power of the radical is defined to be

$$\text{Rad}_A^n(M,N) = \bigoplus_X \text{Rad}_A^{n-1}(X,N) \circ \text{Rad}_A(M,X).$$
From the functorial point of view (see, e.g., [16] and [2] 4.8), we may study almost split sequences in the category \(\text{Fun}(A) \) (resp. \(\text{Fun}^{\text{op}}(A) \)) whose objects are the covariant (resp. contravariant) additive functors from \(\text{mod-}A \) to the category \(\text{mod-k} \) of finite-dimensional \(k \)-vector spaces, and whose morphisms are the natural transformations of functors. Thus, each \(A \)-module \(M \) defines a functor \(\text{Hom}_A(\ _, M) \) in \(\text{Fun}^{\text{op}}(A) \) by \(\text{Hom}_A(\ _, M)(N) = \text{Hom}_A(N, M) \) and a subfunctor \(\text{Rad}_A(\ _, M) \) by \(\text{Rad}_A(\ _, M)(N) = \text{Rad}_A(N, M) \). We denote the induced quotient functor by

\[
\mathcal{H}_M := \text{Hom}_A(\ _, M)/\text{Rad}_A(\ _, M).
\]

In particular, if \(M \) is indecomposable, \(\mathcal{H}_M \) is a simple functor—a functor that has no non-zero proper subfunctor. Dually, each \(A \)-module \(M \) defines a functor \(\text{Hom}_A(M, \ _) \) in \(\text{Fun}(A) \) and the quotient functor \(\mathcal{K}_M \) by its subfunctor \(\text{Rad}_A(M, \ _) \). We have the following functorial characterization of minimal right almost split morphisms; see [16] 1.4 or [2, 4.12.6].

Proposition 7.2.
(a) A morphism \(\varphi : L \to M \) of \(A \)-modules is minimal right almost split if and only if the induced sequence

\[
0 \to \text{Hom}_A(\ _, \ker \varphi) \xrightarrow{\varphi_*} \text{Hom}_A(\ _, L) \xrightarrow{\varphi_*} \text{Hom}_A(\ _, M) \xrightarrow{\xi_M} \mathcal{H}_M \to 0
\]

is a minimal projective resolution of \(\mathcal{H}_M \) in \(\text{Fun}^{\text{op}}(A) \), where \(\kappa : \text{Ker} \varphi \to L \) is the canonical inclusion and \(\xi_M \) denotes the canonical projection.

(b) A morphism \(\psi : N \to L \) of \(A \)-modules is minimal left almost split if and only if the induced sequence

\[
0 \to \text{Hom}_A(\text{Coker} \psi, \ _) \xrightarrow{\psi_*} \text{Hom}_A(\ _, L) \xrightarrow{\psi_*} \text{Hom}_A(\ _, N) \xrightarrow{\xi_N} \mathcal{K}_N \to 0
\]

is a minimal projective resolution of \(\mathcal{K}_N \) in \(\text{Fun}(A) \), where \(\pi : L \to \text{Coker} \psi \) is the canonical projection.

We now assume \(k = \overline{F}_q \) and let \(F_A \) be a fixed Frobenius morphism on \(A \). We also assume that each \(A \)-module \(M \) has an \(F_q \)-structure given by a Frobenius map \(F_M \).

Lemma 7.3. A morphism \(\varphi : L \to M \) (resp. \(\psi : N \to L \)) in \(\text{mod-}A \) is minimal right (resp. left) almost split if and only if \(\varphi[1] : L[1] \to M[1] \) (resp. \(\psi[1] : N[1] \to L[1] \)) is also. In particular, a sequence \(0 \to N \xrightarrow{\psi[1]} L \xrightarrow{\varphi[1]} M \to 0 \) is an almost split sequence if and only if so is \(0 \to N[1] \xrightarrow{\psi[1]} L[1] \xrightarrow{\varphi[1]} M[1] \to 0 \). Moreover, \(\tau M[1] = (\tau M)[1] \).

Proof. Since the Frobenius twisting functor \((\)[1] \) is invertible with the inverse \((\)[−1] \) given in (4.1.1), everything is clear. \(\square \)

Let \(\varphi : L \to M \) be a minimal right almost split morphism in \(\text{mod-}A \). Then, by the lemma above, for each integer \(s \geq 1 \), \(\varphi^{[s]} : L^{[s]} \to M^{[s]} \) is minimal right almost split. Let \(r = p(M) \) be the \(F \)-period of \(M \), i.e., \(r \) is minimal with \(M^{[r]} \cong M \). Then Theorem (7.1) implies \(L^{[r]} \cong L \). By Remarks (4.5.2), we may assume that \(M^{[r]} = M \) and \(L^{[r]} = L \) as \(A \)-modules. Thus, both \(\tilde{M} = \bigoplus_{i=0}^{r-1} M[i] \) and \(\tilde{L} = \bigoplus_{i=0}^{r-1} L[i] \) defined in (5.0.1) are \(F \)-stable with respect to Frobenius maps \(F_{\tilde{M}} \) and \(F_{\tilde{L}} \) defined by \(F_M \) and \(F_L \), respectively (see (5.0.2)). Since both \(\varphi : L \to M \) and \(\varphi^{[r]} : L \to M \) are minimal right almost split, there is a \(g \in \text{Aut}_A(L) \) such that \(\varphi = \varphi^{[r]} \circ g \).

Let \(F = F_{(L, L)} \) and \(F_{(L, M)} \) be the induced Frobenius maps on \(\text{Hom}_A(L, L) \) and
Hom_A(L, M), respectively; see Lemma 7.3. Then \(F_{(L,M)}(\psi \circ f) = F_{(L,M)}(\psi) \circ F(f) \)
for all \(\psi \in \text{Hom}_A(L, M) \) and \(f \in \text{End}_A(L) \). Restricting \(F \)
to the connected algebraic group \(\text{Aut}_A(L) \) and applying Lang-Steinberg’s theorem, we may find an element
\(h \in \text{Aut}_A(L) \) satisfying \(g = F^r(h)h^{-1} \), that is, \(h = g^{-1}F^r(h) \). This implies that
\[\varphi \circ h = \varphi \circ (g^{-1}F^r(h)) = \varphi^r \circ F^r(h) = F_{(L,M)}(\varphi \circ h). \]
Note that, by Proposition 4.2, \(F^r_{(L,M)}(\varphi) = \varphi^r \). Thus, \(\varphi \circ h : L \to M \) is minimal
right almost split satisfying \((\varphi \circ h)^r = \varphi \circ h \). Replacing \(\varphi \) by \(\varphi \circ h \), we may assume
that \(\varphi \) is chosen to satisfy \(\varphi^r = \varphi \). Now we define
\[\tilde{\varphi} := \text{diag}(\varphi, \varphi[1], \ldots, \varphi[r-1]) : \tilde{L} = \bigoplus_{i=0}^{r-1} L[i] \to \bigoplus_{i=0}^{r-1} M[i] = \tilde{M}. \]

The equality \(\varphi^r = \varphi \) implies that \(\tilde{\varphi} \) is a morphism in \(\text{mod}^F-A \). Hence, \(\tilde{\varphi} \) induces
an \(A^F \)-module morphism \(\tilde{\varphi}^F : \tilde{L}^F \to \tilde{M}^F \). Here again we drop the subscripts of the \(F \)'s for notational simplicity.

Theorem 7.4. Let \(\varphi : L \to M \) be a minimal right almost split morphism. Then
there exists an induced morphism \(\tilde{\varphi} : \tilde{L} \to M \) of \(F \)-stable modules such that its
restriction \(\tilde{\varphi}^F : \tilde{L}^F \to M^F \) is a minimal right almost split morphism in \(\text{mod}^F-A^F \).

In particular, every almost split sequence \(0 \to N \to L \xrightarrow{\psi} M \to 0 \) in \(\text{mod}^F-A \) gives rise to an almost split sequence
\[0 \to \tilde{N}^F \xrightarrow{\tilde{\psi}^F} \tilde{L}^F \xrightarrow{\tilde{\varphi}^F} \tilde{M}^F \to 0 \]
in \(\text{mod} A^F \). Moreover, every almost split sequence of \(A^F \)-modules can be con-
structed in this way.

Proof. Clearly, the last assertion follows from Theorem 5.1. From the construction
of \(\tilde{\varphi} \) above, we have \(\text{Ker} \, \tilde{\varphi} = \bigoplus_{i=0}^{r-1} \text{Ker} \, \varphi^i \), and the Frobenius map \(F_{\tilde{L}} \) on \(\tilde{L} \) induces
a Frobenius map on \(\text{Ker} \, \tilde{\varphi} \). Thus, \(\text{Ker} \, \tilde{\varphi} \) is \(F \)-stable.

For each \(0 \leq i \leq r-1 \), by Proposition 7.2 and Lemma 7.3, the morphism
\(\varphi^i : L[i] \to M[i] \) gives the minimal projective resolution of \(\mathcal{H}_{M[i]} \)
\[0 \to \text{Hom}_A(-, \text{Ker} \, \varphi^i) \xrightarrow{\kappa^i} \text{Hom}_A(-, L[i]) \xrightarrow{\varphi^i} \text{Hom}_A(-, M[i]) \xrightarrow{\xi_{M[i]}} \mathcal{H}_{M[i]} \to 0, \]
where \(\kappa^i \) is the inclusion \(\text{Ker} \, \varphi^i \to L[i] \). Summing up, we obtain a minimal
projective resolution of \(\mathcal{H}_{\tilde{M}} \cong \bigoplus_{i=0}^{r-1} \mathcal{H}_{M[i]} \)
\[0 \to \text{Hom}_A(-, \text{Ker} \, \tilde{\varphi}) \xrightarrow{\kappa} \text{Hom}_A(-, \tilde{L}) \xrightarrow{\tilde{\varphi}} \text{Hom}_A(-, \tilde{M}) \xrightarrow{\xi_{\tilde{M}}} \mathcal{H}_{\tilde{M}} \to 0, \]
where \(\kappa = \text{diag}\{\kappa^i\} : \text{Ker} \, \tilde{\varphi} = \bigoplus_{i=0}^{r-1} \text{Ker} \, \varphi^i \to \tilde{L} \). Thus, for each \(F \)-stable module
\((X, F_X)\), we get the following exact sequence:
\[0 \to \text{Hom}_A(X, \text{Ker} \, \tilde{\varphi}) \xrightarrow{\kappa(X)} \text{Hom}_A(X, \tilde{L}) \xrightarrow{\tilde{\varphi}(X)} \text{Hom}_A(X, \tilde{M}) \xrightarrow{\xi_{\tilde{M}(X)}} \mathcal{H}_{\tilde{M}(X)}(X) \to 0. \]

Now the Frobenius maps on modules induce Frobenius maps \(\tilde{F} \) on each space in the
sequence above. It is easy to see that all morphisms in the sequence are compatible
with those Frobenius maps \(\tilde{F} \). This gives the exact sequence
\[0 \to \text{Hom}_A(X, \text{Ker} \, \tilde{\varphi})^\tilde{F} \to \text{Hom}_A(X, \tilde{L})^\tilde{F} \to \text{Hom}_A(X, \tilde{M})^\tilde{F} \to \mathcal{H}_{\tilde{M}(X)}^\tilde{F} \to 0. \]
Then we deduce from Proposition 3.4 the following exact sequence:

\[0 \to \text{Hom}_{A^F}(X^F, \text{Ker}(\tilde{\varphi}^F)) \to \text{Hom}_{A^F}(X^F, \tilde{L}^F) \to \text{Hom}_{A^F}(X^F, M^F) \to H_{\tilde{G}_F}(X^F) \to 0. \]

Since every \(A^F \)-module is of the form \(X^F \) (Theorem 3.2), we obtain a minimal projective resolution of the simple functor \(H_{\tilde{G}_F} \) in \(\text{Fun}(A^F) \)

\[0 \to \text{Hom}_{A^F}(-, \text{Ker}(\tilde{\varphi}^F)) \xrightarrow{\xi^F} \text{Hom}_{A^F}(-, \tilde{L}^F) \xrightarrow{\tilde{\varphi}^F} \text{Hom}_{A^F}(-, M^F) \xrightarrow{\xi M^F} H_{\tilde{G}_F} \to 0. \]

Therefore, by Proposition 3.2 again, \(\tilde{\varphi}^F : \tilde{L}^F \to M^F \) is a minimal right almost split morphism in \(\text{mod-}A^F \). \qed

Dually, for each minimal left almost split morphism \(\psi : N \to L \) in \(\text{mod-}A \), we can construct a minimal left almost split morphism \(\tilde{\psi}^F : \tilde{N}^F \to \tilde{L}^F \) in \(\text{mod-}A^F \) in a similar way. We leave the details to the reader.

8. Auslander-Reiten Quivers

We are now going to prove that the Frobenius morphism \(F \) on \(A \) induces an automorphism \(s \) of the Auslander-Reiten quiver \(Q \) of \(A \) and that the induced modulated quiver \(\mathfrak{M}_{Q,s} \) is isomorphic to the Auslander-Reiten quiver of \(A^F \).

We begin with the general definition. Let \(A \) be a finite-dimensional algebra over an arbitrary field \(k \). For an \(A \)-module \(M \), let \(D_M \) denote the \(k \)-algebra

\[D_M := \text{End}_A(M)/\text{Rad(End}_A(M)). \]

This is a division algebra if \(M \) is indecomposable. By definition, the Auslander-Reiten quiver (or AR-quiver for short) of \(A \) is a (simple) \(k \)-modulated quiver \(Q_A \) consisting of a valued graph \(\Gamma = \Gamma_A \) and a \(k \)-modulation \(M = M_A \) defined on \(\Gamma \). Here, the vertices of \(\Gamma \) are isoclasses \([M]\) of indecomposable \(A \)-modules and the arrows \([M] \to [N]\) for indecomposable \(M \) and \(N \) are defined by the condition \(\text{Irr}_A(M, N) \neq 0 \), where

\[\text{Irr}_A(M, N) := \text{Rad}_A(M, N)/\text{Rad}_A^2(M, N) \]

is the space of irreducible homomorphisms from \(M \) to \(N \). Each arrow \([M] \to [N]\) has the valuation \((d_{MN}, d'_{MN})\), with \(d_{MN} \) and \(d'_{MN} \) being the dimensions of \(\text{Irr}_A(M, N) \) considered as left \(D_N \)-space and right \(D_M \)-space, respectively. The \(k \)-modulation \(M \) is given by division algebras \(D_M \) for vertices \([M]\) and (non-zero) \(D_N-D_M \)-bimodules \(\text{Irr}_A(M, N) \) for arrows \([M] \to [N]\).

Remarks 8.1. (1) The AR-quiver of \(A \) defined in [1, VII.1] is simply the valued quiver \(\Gamma_A \) together with the translation \(\tau \) sending non-projective vertices to non-injective vertices. The modulation \(M_A \) for \(Q_A \) is not explicitly mentioned there. Here we adopt the definition for AR-quivers given by Benson in [2, p. 150]. We will see that this definition is more natural to fit our situation.

(2) The valuation \((d, d')\) of an arrow \([M] \to [N]\) in \(Q_A \) admits the following description (see [1, VII.1]). If \(L \to M \) is minimal right almost split, then \(L \cong d'M \oplus L_1 \), where \(L_1 \) has no summand isomorphic to \(M \). If \(N \to K \) is minimal left almost split, then \(K \cong dN \oplus K_1 \), where \(K_1 \) admits no summand isomorphic to \(N \).
(3) If k is algebraically closed, then $D_M \cong k$ and $d_{MN} = d'_{MN} = \dim_k \text{Irr}(M, N)$ for all indecomposable A-modules M and N. So the moduli in the AR-quiver Q_A consists of k-spaces which can be represented by drawing d_{MN} arrows from $[M]$ to $[N]$. In this way, we turn the modulated quiver Q_A to an ordinary quiver.

We return to our usual setup: let $k = \mathbb{F}_q$ and let F_A be a fixed Frobenius morphism on A. Given an indecomposable A-module M, let $r = p(M)$ be the F-period of M. In view of Remarks 4.5(2), we may assume that $M^{[r]} = M$ (as A-modules). Then $\hat{M} = M \oplus M^{[1]} \oplus \cdots \oplus M^{[r-1]}$ is F-stable with $F_{\hat{M}} : \hat{M} \to \hat{M}$ defined by

$$F_{\hat{M}}(x_0, x_1, \ldots, x_{r-1}) = (F_M(x_{r-1}), F_M(x_0), \ldots, F_M(x_{r-2})).$$

By Theorem 6.4, \hat{M}^F is an indecomposable A^F-module. By Proposition 8.2, the induced Frobenius map $F = F_{(\hat{M}, \hat{M})}$ on $\text{End}_A(\hat{M})$ gives a canonical \mathbb{F}_q-algebra isomorphism

$$(\text{End}_A(\hat{M})/ \text{Rad} \text{End}_A(\hat{M}))^F \cong \text{End}_{A^F}(\hat{M}^F)/ \text{Rad} \text{End}_{A^F}(\hat{M}^F).$$

In particular, if $\hat{M} = X_k := X \otimes k$ for an indecomposable A^F-module X, then

$$(\text{End}_A(\hat{M})/ \text{Rad} \text{End}_A(\hat{M}))^F = (D_{X_k})^F \cong D_X.$$

Let X and Y be indecomposable A^F-modules. Up to isomorphism, we may assume that $X = \hat{M}^F$ and $Y = \hat{N}^F$ for some indecomposable A-modules M and N (see the proof of Theorem 5.1). In fact, we may choose $\hat{M} = X_k$ and $\hat{N} = Y_k$ so that M and N are indecomposable direct summands of the A-modules X_k and Y_k, respectively. We then have

$$D_X \cong (D_{X_k})^F \cong \mathbb{F}_{q^{r_1}} \quad \text{and} \quad D_Y \cong (D_{Y_k})^F \cong \mathbb{F}_{q^{r_2}},$$

where $r_1 = p(M)$ and $r_2 = p(N)$. Moreover, the Frobenius map $F_{(\hat{M}, \hat{N})}$ on $\text{Hom}_A(\hat{M}, \hat{N})$ induces Frobenius maps on $\text{Rad}^n_A(\hat{M}, \hat{N})$ for each $n \geq 1$, and thus, a Frobenius map F on $\text{Irr}_A(\hat{M}, \hat{N})$. By viewing $(\text{Irr}_A(\hat{M}, \hat{N}))^F$ as a D_Y-D_X-bimodule via the isomorphisms $(D_{\hat{M}})^F \cong D_X$ and $(D_{\hat{N}})^F \cong D_Y$, we have the following lemma.

Lemma 8.2. Let $X = \hat{M}^F$ and $Y = \hat{N}^F$ be indecomposable A^F-modules, where M and N are indecomposable A-modules. Then the D_Y-D_X-bimodules $\text{Irr}_A(X, Y)$ and $(\text{Irr}_A(\hat{M}, \hat{N}))^F$ are isomorphic.

Proof. It is clear to see that the restriction of the linear isomorphism given in Proposition 8.3(b) gives an \mathbb{F}_q-linear isomorphism

$$\Psi : \text{Rad}_{A^F}(X, Y) \xrightarrow{\sim} (\text{Rad}_A(\hat{M}, \hat{N}))^F : f \mapsto f \otimes 1,$$

and hence, an \mathbb{F}_q-linear injection

$$\Psi : \text{Rad}_{A^F}(X, Y) \to (\text{Rad}_A(\hat{M}, \hat{N}))^F.$$

Thus, Ψ induces a surjective map

$$\tilde{\Psi} : \text{Irr}_A(X, Y) \to (\text{Rad}_A(\hat{M}, \hat{N}))^F / (\text{Rad}_{A^F}(X, Y))^F \cong (\text{Irr}_A(\hat{M}, \hat{N}))^F,$$

which is clearly a D_Y-D_X-bimodule homomorphism. We now prove that $\tilde{\Psi}$ is a linear isomorphism by a comparison of dimensions.
For each $0 \leq s \leq p(M) - 1$ and each $0 \leq t \leq p(N) - 1$, we set $n_{st} = \dim_k \text{Irr}_A(M^{[s]}, N^{[t]})$. Since
\[\text{Irr}_A(M, N) \cong \bigoplus_{0 \leq s \leq p(M) - 1} \text{Irr}_A(M^{[s]}, N^{[t]}), \]
we have $n := \dim_k \text{Irr}_A(M, N) = \sum s_t n_{st}$, and so $\dim_{\mathbb{F}_q} \left(\text{Irr}_A(M, N) \right)^F = n$. Now, take a minimal right almost split map $L \rightarrow N$. Then, so is $L^{[t]} \rightarrow N^{[t]}$ by Lemma 7.3. For each fixed s, it holds that $L^{[t]} \cong n_{st} M^{[s]} \oplus L_{st}$ with $M^{[s]} \nmid L_{st}$ for all $0 \leq t \leq p(N) - 1$. Thus, $\tilde{L} \cong n_{s} M^{[s]} \oplus L_{s}$ for all s with $0 \leq s \leq p(M) - 1$, where $n_s = \sum_{t=0}^{p(N)-1} n_{st}$ and $L_s = \bigoplus_{t=0}^{p(N)-1} L_{st}$. Since $\tilde{L} = \tilde{L}^{[1]} \cong n_s M^{[s+1]} \oplus L_s^{[1]}$ and the $M^{[s]}$ are pairwise non-isomorphic, it follows that $n_s = n_{s+1}$ for all $0 \leq s < p(M) - 1$. Thus, $n_s = \dim_k M$ and $\tilde{L} \cong \tilde{L}_s^{[1]} \bigoplus \tilde{L}_s' F$ for some F-stable module \tilde{L}_s' with $\tilde{M} \nmid \tilde{L}'$. On the other hand, by Theorem 7.4 (see also Remarks 8.1(2)), $\tilde{L}^F \rightarrow \tilde{N}^F = Y$ is minimal right almost split and
\[\tilde{L}^F \cong \frac{n}{p(M)} \tilde{M}^F \oplus \tilde{L}_s' = \frac{n}{p(M)} X \oplus \tilde{L}_s', \]
with $X \nmid \tilde{L}_s'$, it follows that if (d, d') is the valuation of the arrow $[X] \rightarrow [Y]$ in the AR-quiver Q_A^F of A^F, then $d' = \frac{n}{p(M)}$. Hence,
\[\dim_{\mathbb{F}_q} \text{Irr}_A^F(X, Y) = d' \dim_{\mathbb{F}_q} D_X = n = \dim_{\mathbb{F}_q} \left(\text{Irr}_A(M, N) \right)^F. \]
Consequently, $\tilde{\Psi}$ is a D_Y-D_X-bimodule isomorphism.

Since the algebra A is defined over the algebraically close field $k = \mathbb{F}_q$, we may regard the AR-quiver $Q = Q_A$ of A as an ordinary quiver (see Remark 8.3)). We first observe that Q admits an admissible automorphism s. For each vertex $[M] \in Q$, $s([M])$ is defined to be $[M^{[1]}]$. If M and N are indecomposable A-modules, then there are n_{st} arrows $\gamma^{(m)}_{s,t}$ from $[M^{[s]}]$ to $[N^{[t]}]$ in Q, where $0 \leq s, t \leq p(M) - 1$, $0 \leq t \leq p(N) - 1$, $n_{st} = \dim_k \text{Irr}_A(M^{[s]}, N^{[t]})$ and $1 \leq m \leq n_{st}$. Note that $n_{st} = n_{s+1,t+1}$ for all s, t, where subscripts are considered as integers modulo $p(M)$ and $p(N)$, respectively. We now define
\[s[\gamma^{(m)}_{s,t}] = [\gamma^{(m)}_{s+1,t+1}] \text{ for all } 0 \leq s \leq p(M) - 1 \text{ and } 0 \leq t \leq p(N) - 1. \]
Clearly, s is an admissible quiver automorphism and (Q, s) is an ad-quiver.

Associated to (Q, s), we may define a modulated quiver $M(Q, s)$ as in (6.2.3): let $A = kQ$ denote the path algebra of Q and $F = F_{Q,s}$ be the Frobenius morphism of A induced by the automorphism s. For each vertex $i(M)$ (i.e., the s-orbit of $[M]$) and each arrow ρ (i.e., an s-orbit of arrows in Q) in $\Gamma(Q, s)$, we define subspaces
\[A_{i(M)} = \bigoplus_{s=0}^{p(M)-1} k e_{[M^{[s]}]} \text{ and } A_{\rho} = \bigoplus_{\rho \in \rho} k \rho, \]
of A, which are obviously F-stable. By definition, the \mathbb{F}_q-modulation $M(Q, s)$ is given by $(A_{i(M)})^F$ and $(A_{\rho})^F$ for all vertices $i(M)$ and arrows ρ in $\Gamma(Q, s)$.

Recall Definition 5.2 of isomorphisms for modulated quivers. We can now state the following result.
Theorem 8.3. The modulated quiver \(\mathfrak{M}_{\mathcal{Q}, s} \) associated to the AR-quiver \((\mathcal{Q}, s) \) of \(A \) defined above is isomorphic to the AR-quiver \(\mathcal{Q}_{AF} \) of \(AF \). Moreover, the Auslander-Reiten translation of \(A \) naturally induces that of the fixed point algebra \(AF \).

Proof. If \(X = \tilde{M}F \) is an indecomposable \(AF \)-module, then clearly, the correspondence \([X] \rightarrow i(M) \) gives a bijection between vertices of \(\mathcal{Q}_{AF} \) and those of \(\mathfrak{M}_{\mathcal{Q}, s} \) (see Theorem 5.1). Moreover, there is an isomorphism

\[
\text{(8.3.1)} \quad \mathcal{A}_{i(M)} = \bigoplus_{s=0}^{p(M)-1} ke_0 \overset{p(M)-1}{\longrightarrow} \bigoplus_{s=0}^{p(M)-1} D_{M[s]} \cong D_{\tilde{M}}, \quad \sum_s x_s e_0 \overset{p(M)-1}{\longrightarrow} (x_s 1_{M[s]})_s
\]

which induces an \(F \)-algebra isomorphism \((\mathcal{A}_{i(M)})^F \cong (D_{\tilde{M}})^F \cong D_X \). As before, we shall identify \((\mathcal{A}_{i(M)})^F \) with \(D_X \). Thus, \((\mathcal{A}_p)^F \) is a \(DY \)-\(DX \)-bimodule.

It remains to prove that for \(X = \tilde{M}F \) and \(Y = \tilde{N}F \), where \(M \) and \(N \) are indecomposable \(A \)-modules, there is a \(DY \)-\(DX \)-bimodule isomorphism

\[
\text{(8.3.2)} \quad \bigoplus_{\rho: i(M) \rightarrow i(N)} (\mathcal{A}_\rho)^F \cong \text{Irr}_A(X, Y).
\]

By Lemma 8.2, it suffices to show that we have a \((D_{\tilde{N}})^F \)-\((D_{\tilde{N}})^F \)-bimodule isomorphism

\[
\bigoplus_{\rho: i(M) \rightarrow i(N)} (\mathcal{A}_\rho)^F \cong (\text{Irr}_A(\tilde{M}, \tilde{N}))^F
\]

or a \(D_{\tilde{N}} \)-\(D_{\tilde{M}} \)-bimodule isomorphism

\[
\text{(8.3.3)} \quad \phi: \bigoplus_{\rho: i(M) \rightarrow i(N)} \mathcal{A}_\rho \overset{\sim}{\rightarrow} \text{Irr}_A(\tilde{M}, \tilde{N}),
\]

which is compatible with the Frobenius morphism \(F_A \) on \(A \) and \(F \) on \(\text{Irr}_A(\tilde{M}, \tilde{N}) \).

Let \(d \) and \(l \) denote the greatest common divisor and the least common multiple of \(r_1 = p(M) \) and \(r_2 = p(N) \), respectively. As before, let \(n_{st} = \dim q \text{Irr}_A(M[s], N[t]) \) and denote by \(\gamma^{(m)}_{s, t} \) all arrows from \([M[s]] \) to \([N[t]] \) in \(Q_A \). Then the set of arrows

\[
\{ \gamma^{(m)}_{s, t} | 0 \leq s \leq r_1 - 1, 0 \leq t \leq r_2 - 1, 1 \leq m \leq n_{st} \}
\]

is \(s \)-stable, and the arrows \(\gamma^{(m)}_{0, t} \) with \(0 \leq t \leq d - 1 \) and \(1 \leq m \leq n_{0t} \) form a complete set of representatives of \(s \)-orbits in this set, each of which is of length \(l \). On the other hand, for each \(0 \leq t \leq d - 1 \), the space \(\text{Irr}_A(M, N[t]) \) is \(F^l \)-stable with \(l \) minimal. Thus, we can choose a \(k \)-basis \(\xi^{(m)}_{0, t} \), \(1 \leq m \leq n_{0t} \), of \(\text{Irr}_A(M, N[t]) \) which are \(F^l \)-fixed. Then the set

\[
\{ F^a(\xi^{(m)}_{0, t}) | 0 \leq t \leq d - 1, 1 \leq m \leq n_{0t}, 0 \leq a \leq l - 1 \}
\]

is a \(k \)-basis for \(\bigoplus_{s, t} \text{Irr}_A(M[s], N[t]) \cong \text{Irr}_A(\tilde{M}, \tilde{N}) \). Thus, the correspondence \(\gamma^{(m)}_{0, t} \mapsto \xi^{(m)}_{0, t} \) induces an isomorphism of \(k \)-spaces

\[
\phi: \bigoplus_{\rho: i(M) \rightarrow i(N)} \mathcal{A}_\rho \overset{\sim}{\rightarrow} \text{Irr}_A(\tilde{M}, \tilde{N})
\]

sending \(\gamma^{(m)}_{0, t} \) to \(F^a(\xi^{(m)}_{0, t}) \). Therefore, \(\phi \circ F_A = F \circ \phi \). Using the isomorphism given in (8.3.1), we easily see that \(\phi \) is a \(D_{\tilde{N}} \)-\(D_{\tilde{M}} \)-bimodule isomorphism. So (8.3.3) is proved.
To prove the last assertion, we first note that the Frobenius morphism F_A on A is also a Frobenius morphism on A^{op}. Since the projective cover of an A-module is unique up to isomorphism, each F-stable A-module M admits a minimal projective presentation $P_1 \xrightarrow{f} P_0 \xrightarrow{\pi} M \to 0$ such that P_0 and P_1 are F-stable projective and that f and π are morphisms in mod^F_A. Thus the transpose $\text{Tr} : \text{mod}^F_A \to \text{mod}^{F^{op}}_A$ induces a functor $T : \text{mod}^{F^{op}}_A \to \text{mod}^F_A$, where, for example, $\text{mod}^{F^{op}}_A$ denotes the factor category of mod^F_A modulo morphisms factoring through an F-stable projective A-module. It is obvious that the dual $D = \text{Hom}_k(_ , k) : \text{mod}^F_A \to \text{mod}^{F^{op}}_A$ induces a dual $D : \text{mod}^{F^{op}}_A \to \text{mod}^F_A$. On the other hand, for the fixed algebras A^F and $(A^{op})^F = (A^F)^{op}$, we also have the transpose $\text{Tr}^F : \text{mod}^F_A \to \text{mod}^{(F^F)^{op}}_A$ and the dual $D^F = \text{Hom}_{F_q}(_ , F_q) : \text{mod}^F_A \to \text{mod}^{(F^F)^{op}}_A$. Furthermore, the functor $\Phi = \Phi_A : \text{mod}^F_A \to \text{mod}^{F^{op}}_A$ defined in the proof of Theorem 3.2 induces functors $\Phi_A : \text{mod}^{F^{op}}_A \to \text{mod}^F_A$ and $\Phi_A : \text{mod}^{F^{op}}_A \to \text{mod}^{(F^F)^{op}}_A$. By Proposition 3.3, we finally have the following commutative square

\[
\begin{array}{ccc}
\text{mod}^F_A & \xrightarrow{DT} & \text{mod}^{(F^F)^{op}}_A \\
\Phi_A & & \Phi_A^{op} \\
\text{mod}^{F^{op}}_A & \xrightarrow{D^F \text{Tr}^F} & \text{mod}^F_A \\
\end{array}
\]

\[\square\]

Remarks 8.4. (1) By the definition of γ, each $(\mathcal{A}_\rho)^F$ is a simple $D^F - D_X$-bimodule. Thus, the isomorphism in \textbf{[8.3.2]} gives a decomposition of the $D^F - D_X$-bimodule $\text{Irr}_{A^F}(X, Y)$ into the sum of simples.

(2) By Theorems 7.3 and 8.3, we see that the Auslander-Reiten theory for algebras defined over a finite field F_q is completely determined by the theory for algebras defined over the algebraic closure \overline{F}_q.

(3) We point out that certain behaviour of Auslander-Reiten sequences under base field extension has been investigated in \textbf{[27]}.

9. Counting the number of F-stable representations

In this section, we shall use the theory established in §6 to count the number of representations (resp. indecomposable representations) of a finite-dimensional hereditary (basic) F_q-algebra in terms of representations of an ad-quiver. In particular, we shall prove that, for a given dimension vector, these numbers are polynomials in q. This generalizes \textbf{[19]} Corollary 3.5 to arbitrary F_q-modulated quiver.

Let (\mathcal{Q}, σ) be an ad-quiver and let $\mathfrak{M}_{Q, \sigma}$ be the associated modulated quiver with underlying valued quiver $\Gamma = \Gamma(Q, \sigma) = (I, \Gamma_1)$. By definition, a representation $V = (V, \phi)$ of Q over k consists of a Q_0-graded k-vector space $V = \bigoplus_{i \in Q_0} V_i$ and a family of k-linear maps $\phi = (\phi_\rho)_\rho$ with $\phi_\rho : V_i \to V_j$ for every arrow $\rho : i \to j$ in Q_1. A morphism from (V, ϕ) to (V', ϕ') is given by a Q_0-graded morphism $f = (f_i)_i : V \to V'$ such that $f_{i\rho} \circ \phi_\rho = \phi'_\rho \circ f_{i\rho}$ for each arrow ρ. We denote by $\text{Rep} \mathcal{Q} = \text{Rep}_k^Q$ the category of all finite-dimensional representations of Q over k.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
It is well known that \(\text{mod}-A \), where \(A = kQ \), and \(\text{Rep} Q \) are equivalent categories. For each \(Q_0 \)-graded vector space \(V = \bigoplus_{i \in Q_0} V_i \), we call
\[
\dim V := \sum_{i \in I} (\dim_k V_i) i \in \mathbb{N}Q_0
\]
the dimension vector of \(V \).

Following Lusztig [30], by \(C_I \) we denote the sub-category of the category \(\mathcal{V}_{k,F} \) (see the definition before Lemma 2.3) whose objects are \(Q_0 \)-graded \(k \)-vector spaces \(V = \bigoplus_{i \in Q_0} V_i \) with an \(F_q \)-rational structure determined by a Frobenius map \(F = F_V : V \to V \) such that \(F(V_i) = V_{\sigma(i)} \) for each \(i \in Q_0 \). The morphisms in \(C_I \) are \(k \)-linear maps compatible with both the gradings and the Frobenius maps. Note that, for each \(\alpha = \sum_{i \in Q_0} a_i i \in \mathbb{N}Q_0 \) satisfying \(a_i = a_{\sigma(i)}, \forall i \in Q_0 \), there is a unique, up to isomorphism, object in \(C_I \) with dimension vector \(\alpha \) (see the remarks before Lemma 2.3).

A representation \((V, \phi) \) of \(Q \) with \(V \in C_I \) is called \(F \)-stable if, for each \(\rho \in Q_1 \), the equality \(F \circ \phi_{\rho} = \phi_{\sigma(\rho)} \circ F \) holds, that is, the following diagram commutes:

\[
\begin{array}{ccc}
V_{\rho} & \xrightarrow{\phi_{\rho}} & V_{\rho} \\
\downarrow F & & \downarrow F \\
V_{\sigma(\rho)} & \xrightarrow{\phi_{\sigma(\rho)}} & V_{\sigma(\rho)}
\end{array}
\]

Let \(\text{Rep}^F(Q, \sigma) \) be the category consisting of \(F \)-stable representations of \(Q \) together with morphisms in \(\text{Rep} Q \) which are compatible with Frobenius maps. Then \(\text{Rep}^F(Q, \sigma) \) is an abelian \(F_q \)-category. It is easy to see that the equivalence between \(\text{mod}-A \) and \(\text{Rep} Q \) induces an equivalence between \(\text{mod}^F-A \), where \(F = F_Q, \sigma, q \) and \(\text{Rep}^F(Q, \sigma) \). Hence, by Theorem 3.2, \(\text{Rep}^F(Q, \sigma) \) and \(\text{mod}-A \) are equivalent.

The quiver automorphism \(\sigma \) extends linearly to a group automorphism \(\sigma \) on \(ZQ_0 \) defined by \(\sigma(\sum_{i \in Q_0} a_i i) = \sum_{i \in Q_0} a_{\sigma(i)} i \). Clearly, if \(V \) is \(F \)-stable, then \(\sigma(\dim V) = \dim V \). Let \((ZQ_0)^{\sigma} \) denote the \(\sigma \) fixed point subset of \(ZQ_0 \). This set can be identified with the group \(ZI \) via the canonical bijection
\[
\tilde{\sigma} : (ZQ_0)^{\sigma} \to ZI ; \sum_{i \in Q_0} b_i i \mapsto \sum_{i \in I} a_i i,
\]
where \(a_i := b_i \) for all \(i, j \in I \) (see [21] §2]). In particular, the dimension vector \(\dim X = \sum_{i \in I} d_i i \in NI \) of an \(A^F \)-module \(X \) can be defined by
\[
\dim X = \tilde{\sigma}(\dim (X \otimes k)).
\]
Note that if, for each \(i \in I \), \(S_i \) denotes the simple \(A^F \)-module corresponding to the idempotent \(e_i = \sum_{j \in I} e_i e_j \) of \(A^F \), then \(d_i = \dim_{A^F} e_i X \) is the number of composition factors isomorphic to \(S_i \) in a composition series of \(X \).

Given a matrix \(x = (x_{ij}) \in k^{m \times n} \) and an integer \(r \geq 0 \), we define
\[
x^{[r]} = (x^{qr}) \in k^{m \times n}.
\]
For each \(\beta = \sum_{i \in Q_0} b_i i \in (\mathbb{N}Q_0)^{\sigma} \), let \(V_i = k^{b_i} \) for each \(i \in Q_0 \). We define a Frobenius map \(F \) on the \(Q_0 \)-graded vector space \(V = \bigoplus_{i \in Q_0} V_i \) such that, for
\[v \in V_i, \ F(v) = v^{[1]} \in V_{\sigma(i)} \text{ for all } i \in Q_0. \] We further define
\[R(\beta) = R(Q, \beta) = \prod_{\rho \in Q_1} \text{Hom}_k(k^{b_{\rho}}, k^{b_{\rho}}) \cong \prod_{\rho \in Q} k^{b_{\rho} \times b_{\rho}}. \]
Then the Frobenius map \(F \) on \(V \) induces a Frobenius map on the variety \(R(\beta) \) such that, for \(x = (x_\rho) \in R(\beta) \), \(F(x) = (y_\rho) \) is defined by
\[y_\rho(F(v)) = F(x_{\sigma^{-1}(\rho)}(v)) \text{ for all } \rho \in Q_1, v \in V_{\sigma^{-1}(\rho)}. \]
By viewing each \(x_\rho \) as a matrix over \(k \), we have \(y_\rho = x_\rho^{[1]} \). Obviously, a point \(x = (x_\rho) \) of \(R(\beta) \) determines a representation \(V(x) = (V_i, x_\rho) \) of \(Q \). The algebraic subgroup
\[G(\beta) = \prod_{i \in Q_0} GL_{b_i}(k) \]
of \(GL(V) \) acts on \(R(\beta) \) by conjugation
\[(g_i)_i \cdot (x_\rho)_\rho = (g_h x_\rho g_{-1\rho})_\rho, \]
and the \(G(\beta) \)-orbits \(O_\rho \) in \(R(\beta) \) correspond bijectively to the isoclasses \([V(x)]\) of representations of \(Q \) with dimension vector \(\beta \).

The Frobenius map \(F \) on \(V \) also induces a Frobenius map on the group \(GL(V) \) given by
\[F(gv) = F(g)(F(v)) \text{ for all } g \in GL(V), v \in V. \]
It is clear that the subgroup \(G(\beta) \) is \(F \)-stable such that \(F(g)_{\sigma(i)} = g_i^{[1]} \) for \(g = (g_i) \in G(\beta) \). The action of \(G(\beta) \) on \(R(\beta) \) restricts to an action of \(G(\beta)^F \) on \(R(\beta)^F \). Then, the \(G(\beta)^F \)-orbits in \(R(\beta)^F \) correspond bijectively to the isoclasses of \(F \)-stable representations in \(\text{Rep}^F(Q, \sigma) \) with dimension vector \(\beta \), or equivalently, to the isoclasses of \(A^F \)-modules with dimension vector \(\tilde{\sigma}(\beta) \).

For each \(\alpha = \sum_{i \in I} a_i \in \mathbb{N}I \), let \(M_{Q, \sigma}(\alpha, q) \) (resp. \(M_{Q, \sigma}(\alpha, q) \)) be the number of isoclasses of \(A^F \)-modules (resp. indecomposable \(A^F \)-modules) of dimension vector \(\alpha \). Further, as indicated above, \(M_{Q, \sigma}(\alpha, q) \) is the number of \(G(\beta)^F \)-orbits in \(R(\beta)^F \), where \(\beta = \tilde{\sigma}^{-1}(\alpha) \in \mathbb{N}Q_0 \).

Write \(\beta = \sum_{i \in Q_0} b_i \). Note that \(b_i = a_i \) for all \(i \in I \). For each \(i \in I \) and each arrow \(\rho : i \rightarrow j \) in \(\Gamma \), we define
\[G_i = \prod_{i \in I} GL_{b_i}(k) \text{ and } R_\rho = \prod_{\rho \in \rho} \text{Hom}_k(k^{b_{\rho}}, k^{b_{\rho}}) \cong \prod_{\rho \in \rho} k^{b_{\rho} \times b_{\rho}}. \]
By fixing an \(i_0 \in I \) and a \(\rho_0 \in \rho \), we can identify
\[G_i = \{(g_i)_{i \in I} | g_{\sigma(i)} = g_i^{[1]} \text{ for all } i \in I\} \]
with \(GL_{ai}(\mathbb{F}_{q^{ai}}) \) by \(g_i := (g_i) \) and identify
\[R_\rho = \{(x_\rho)_{\rho \in \rho} | x_{\sigma(\rho)} = x_\rho^{[1]} \text{ for all } \rho \in \rho\} \]
with \(\mathbb{F}_{q^{ai}} \times \mathbb{F}_{q^{ai}} \) by \(x_\rho := (x_\rho) \). Hence, we may identify their products
\[G(\beta)^F = \prod_{i \in I} G_i^F \text{ and } R(\beta)^F = \prod_{\rho \in \rho} R_\rho^F \]
with
\[G := \prod_{i \in I} GL_{ai}(\mathbb{F}_{q^{ai}}) \text{ and } X := \prod_{\rho \in \rho} \mathbb{F}_{q^{ai}}^{ai}. \]
respectively. Under this identification, the action of $G(\beta)^F$ on $R(\beta)^F$ becomes the action of G on X: for $g = (g_i) \in G$ and $x = (x_\rho) \in X$,

$$(g \cdot x)_\rho = g_j^{[r_\rho]} x_\rho (g_i^{[r_\rho]})^{-1}$$

for each arrow $\rho : i \to j$.

where $0 \leq r_\rho \leq \varepsilon_i - 1$ and $0 \leq s_\rho \leq \varepsilon_j - 1$ are determined by $\rho_0 : \sigma^\rho(i_0) \to \sigma^\rho(j_0)$ (see Remark 5.7(1)). Then $M_{Q,\sigma}(\alpha, q)$ is the number of G-orbits in X.

For each $g = (g_i) \in G$, we set $X^g = \{ x \in X \mid g \cdot x = x \}$ and $G_g = \{ h \in G \mid hg = gh \}$. By Burnside’s formula, we have

$$M_{Q,\sigma}(\alpha, q) = \frac{1}{|G|} \sum_{g \in G} |X^g| = \sum_{g \in ccl(G)} \frac{|X^g|}{|G_g|},$$

where $ccl(G)$ is a set of representatives of conjugacy classes of G. Further, we have

$$|X^g| = \prod_{\rho \in I} |X^g_{\rho}| \text{ and } |G_g| = \prod_{i \in I} |GL_{a_i}(F_{q^{|i|}})_{g_i}|,$$

where $X^g = \{ x_\rho \in \mathbb{F}_{q^{|i|}} \times \mathbb{F}_{q^{|i|}} \mid g_\rho x_\rho = x_\rho g_\rho \}$ and $GL_{a_i}(F_{q^{|i|}})_{g_i} = \{ h_i \in GL_{a_i}(F_{q^{|i|}}) \mid h_ig_i = g_ih_i \}$.

In order to compute $M_{Q,\sigma}(\alpha, q)$, we need to deal with the conjugacy classes in $GL_m(F_{q^r})$ for $m, r \geq 1$ (see, for example, [28, Chap. IV]).

We denote by $\Phi(q^r)$ the set all irreducible polynomials in indeterminate T over F_{q^r} with leading coefficient 1, excluding the polynomial T, and by \mathcal{P} the set of all partitions, i.e. finite sequences $\lambda = (\lambda_1, \lambda_2, \ldots)$ of non-negative integers with $\lambda_1 \geq \lambda_2 \geq \cdots$. For $\lambda, \mu \in \mathcal{P}$, we define $|\lambda| = \sum \lambda_i$, $b_\lambda(q) = \prod_{i \geq 1} (1 - q)(1 - q^2) \cdots (1 - q^{\lambda_i})$, and $(\lambda, \mu) = \sum_{i,j} \min(\lambda_i, \mu_j)$, where λ_i is the number of λ_j’s with $\lambda_j = i$.

It is known that the conjugacy classes in $GL_m(F_{q^r})$ are in one-to-one correspondence with the isoclasses of $F_{q^r}[T]$-modules of dimension m. The latter is parametrized by the functions $\pi : \Phi(q^r) \to \mathcal{P}$ such that $\sum_{\phi \in \Phi(q^r)} d(\phi)|\pi(\phi)| = m$, where $d(\phi)$ denotes the degree of ϕ. Each such function π corresponds to the module

$$\bigoplus_{\phi \in \Phi(q^r) : \pi(\phi) \geq 1} F_{q^r}[T]/(\phi^{\pi(\phi)}),$$

where $\pi(\phi) = (\pi_1(\phi), \pi_2(\phi), \ldots)$. Let $g \in GL_m(F_{q^r})$ be in the conjugacy class corresponding to the partition function $\pi : \Phi(q^r) \to \mathcal{P}$. Then we have (see [28, p. 272])

$$|GL_m(F_{q^r})_g| = \left| \left\{ h \in GL_m(F_{q^r}) \mid hg = gh \right\} \right| = \prod_{\phi \in \Phi(q^r)} q^{d(\phi)|\pi(\phi)|} b_{\pi(\phi)}(q^{-d(\phi)}).$$

Further, let $s, t, n_1, n_2, n \geq 1$, be such that $n_1|n$ and $n_2|n$. Take $g_1 \in GL_{n_1}(F_{q^{n_1}})$ and $g_2 \in GL_{n_2}(F_{q^{n_2}})$ such that their conjugacy classes correspond respectively to partition functions $\pi_1 : \Phi(q^{n_1}) \to \mathcal{P}$ and $\pi_2 : \Phi(q^{n_2}) \to \mathcal{P}$ [By [23, p. 253]], we have

$$|\{ x \in F_{q^{n_1}}^{\times} \mid g_2x = xg_1 \}| = q^n \sum_{\phi \in \Phi(q^{n_1}), \phi \in \Phi(q^{n_2})} d(\phi, \psi)(\pi_1(\phi), \pi_2(\psi)),
$$

where $d(\phi, \psi)$ denotes the degree of the greatest common divisor of ϕ and ψ over a common extension field of $F_{q^{n_1}}$ and $F_{q^{n_2}}$. (Note that $d(\phi, \psi)$ is independent of the extension field.)

It follows that the conjugacy classes in $G = \prod_{i \in I} GL_{a_i}(F_{q^{|i|}})$ are in one-to-one correspondence to multi-partition functions $\pi = (\pi^i)_{i \in I}$ of $\pi^i : \Phi(q^{|i|}) \to \mathcal{P}$ with
The number \(\Phi(q^{i(\sigma)}) = (g_{i}) \) of \(q \)-admissible orientations of the quiver \(Q \) is a polynomial in \(q \) with rational coefficients and independent of the \(\sigma \)-admissible orientation of \(Q \).

Proof. By (9.0.2), \(M_{Q,\sigma}(\alpha,q) = \frac{\sum_{\pi \in \Phi(q^{i(\sigma)})} |X^{\pi}|}{G^{\pi}} \) is a rational function in \(q \) over \(\mathbb{Q} \). Since \(M_{Q,\sigma}(\alpha,q) \in \mathbb{Z} \) for all power \(q = p^{\alpha} \) of a prime \(p \), it follows that \(M_{Q,\sigma}(\alpha,q) \) is a polynomial. Further, whenever \(i_{0} \in I \) and \(\rho_{0} \in \rho \) for \(i \in I \) and \(\rho \in \Gamma_{I} \) are fixed, and the numbers \(r_{\rho} \) and \(s_{\rho} \) for each \(\rho \in \Gamma_{I} \) are clearly independent of the orientation of \(\rho \), we have again by (9.0.2) that \(M_{Q,\sigma}(\alpha,q) \) is independent of the orientation of \(\Gamma \), i.e., the \(\sigma \)-admissible orientation of \(Q \).

By induction on the height \(h_{\alpha} := \sum_{i \in I} a_{i} \) of \(\alpha = \sum_{i \in I} a_{i}i \in \mathbb{N}I \), we deduce the following; see [19] for the case of natural \(F_{q} \)-modulated quivers (Remarks 6.7(2)).

Corollary 9.2. The number \(I_{Q,\sigma}(\alpha,q) \) of isoclasses of indecomposable \(A^{F} \)-modules of dimension vector \(\alpha \) is a polynomial in \(q \) with rational coefficients and independent of the \(\sigma \)-admissible orientation of \(Q \).

10. Kac’s Theorem for the Symmetrizable Case

In this last section, we present an application to Lie theory. We keep the notation introduced in \(\S 9 \). Thus, \((Q,\sigma) \) denotes an ad-quiver and \(M_{Q,\sigma} \) is the associated modulated quiver with the underlying valued quiver \(\Gamma = \Gamma(Q,\sigma) = (I,\Gamma_{I}) \).

3The \(\sigma \)-admissible orientations of the underlying graph of \(Q \) correspond to the orientations of the underlying graph of \(\Gamma \).
The quiver Q defines a symmetric generalized Cartan matrix $C_Q = (a_{ij})_{i,j \in Q_0}$ given by
\[
a_{ij} = \begin{cases} 2 & \text{if } i = j, \\ -|\{\text{arrows between } i \text{ and } j\}| & \text{if } i \neq j, \end{cases}
\]
while the valued quiver $Γ$ defines a symmetrizable generalized Cartan matrix $C_Γ = (b_{ij})_{i,j \in Γ}$ given by
\[
b_{ij} = \begin{cases} 2 & \text{if } i = j, \\ -\sum_{\rho} \varepsilon_{\rho}/\varepsilon_i & \text{if } i \neq j, \end{cases}
\]
where the sum is taken over all arrows ρ between i and j (see (24.1)). In fact, all symmetrizable generalized Cartan matrices can be obtained in this way.

Let $Δ(Γ) \subseteq ZI$ be the root system associated with the valued quiver $Γ$, or equivalently, the root system of the Kac–Moody algebra associated with the Cartan matrix $C_Γ$ (see [24] for its definition). We shall write $Δ(Q)$ for $Δ(Γ)$ if $σ = 1$ and $Δ(Γ)^+$ for the positive root system of $Δ(Γ)$. Putting $I_Q(α, q) = I_{Q,1}(α, q)$ (see (6.2.1)), it is proved in [24] that the polynomial $I_Q(α, q)$ is non-zero if and only if $α \in Δ(Γ)^+$. Moreover, $I_Q(α, q) = 1$ if $α$ is real. This is known as Kac’s theorem which links the representations of a quiver with its associated (symmetric) Kac–Moody algebra. We shall see below that this relation remains true for a modulated quiver and its associated Kac–Moody algebra. Thus, Kac’s theorem holds in the symmetrizable case. See Remarks (10.3) below for other proofs of this generalization.

For $β \in Δ(Q)$, let $t \geq 1$ be the minimal integer satisfying $σ^t(β) = β$. We call t the $σ$-period of $β$, denoted $p(β) = p_σ(β)$. Recall from (9.0.1) the group isomorphism $\hat{σ} : (ZQ_0)^σ \rightarrow ZI$ which induces a map from $Δ(Q)$ to $Δ(Γ)$ in the following.

Lemma 10.1 ([34], [21] Prop. 4). Let $β \in Δ(Q)$ and let
\[
β := β + σ(β) + \cdots + σ^{t-1}(β) \in (ZQ_0)^σ,
\]
where $t = p_σ(β)$. Then $β \mapsto \hat{σ}(β)$ defines a surjective map $Δ(Q) \rightarrow Δ(Γ)$. Moreover, if $σ(β)$ is real, then $β$ is real and is unique up to $σ$-orbit.

Let A be the path algebra kQ of Q over $k = \mathbb{F}_q$ and let $F = F_{Q,σ,q}$ be the Frobenius morphism on A induced from $σ$. In order to prove the following result, we recall from [21] §3 the definition of an isomorphically invariant representation of Q. Given a representation $V = (V, φ)$ of Q over k, we define a new representation $σV = (σV, ψ)$ of Q by $(σV)_i = V_{σ^{-1}(i)}$ and $ψ_ρ = φ_{σ^{-1}(ρ)}$ for all $i \in Q_0$ and $ρ \in Q_1$. The representation V is called isomorphically invariant if $V \cong σV$. Such a representation V is said to be isomorphically invariant indecomposable if it is not a direct sum of two non-zero isomorphically invariant representations. Since the Frobenius morphism $F_{Q,σ,q}$ on A is the composition of the standard Frobenius morphism $F_{Q,1,q}$ and the algebra automorphism of kQ induced from $σ$, we have the following relation between isomorphically invariant representations and F-stable representations.

Lemma 10.2. Let $V = (V, φ)$ be a representation of Q defined over \mathbb{F}_q (i.e., all linear maps $φ_ρ$ are defined over \mathbb{F}_q). Then V is F-stable (with respect to $F_{Q,σ,q}$) if and only if V is isomorphically invariant.

Proof. If V is defined over \mathbb{F}_q, then the Frobenius twist $V^{[F_q]}$ for some Frobenius map F_V on V is isomorphic to $σV$ (see §9). Now the assertion follows from Proposition 4.3(b).
Theorem 10.3. The polynomial \(I_{Q, \sigma}(\alpha, q) \) is non-zero if and only if \(\alpha \in \Delta(\Gamma)^+ \). Moreover, if \(\alpha \in \Delta(\Gamma)^+ \) is real, then \(I_{Q, \sigma}(\alpha, q) = 1 \).

Proof. Let \(X \) be an indecomposable \(A^F \)-module with \(\text{End}_{A^F}(X)/\text{Rad}(\text{End}_{A^F}(X)) \cong \mathbb{F}_q \). By Theorem 5.1 there is an indecomposable \(A \)-module \(M \) such that \(M = M^{[t]} \) and

\[
X_k := X \otimes_{\mathbb{F}_q} k \cong M \oplus M^{[1]} \oplus \cdots \oplus M^{[r-1]}.
\]

Moreover, \(M, M^{[1]}, \ldots, M^{[r-1]} \) are pairwise non-isomorphic. By Kac’s theorem, the dimension vector \(\beta := \dim M \) lies in \(\Delta(Q)^+ \). Let \(t \) be minimal such that \(\sigma^t(\beta) = \beta \). Since \(\dim M^{[1]} = \sigma(\dim M) \), we have \(t | r \) and

\[
\dim X_k = \beta + \sigma(\beta) + \cdots + \sigma^{r-1}(\beta) = \frac{r}{t} \hat{\beta}.
\]

If \(\beta \) is an imaginary root, then \(\hat{\sigma}(\hat{\beta}) \) is an imaginary root in \(\Delta(\Gamma)^+ \). We conclude that

\[
\dim X = \hat{\sigma}(\dim X_k) = \frac{r}{t} \hat{\beta}
\]

is an imaginary root in \(\Delta(\Gamma)^+ \). If \(\beta \) is real, then \(r = t \). This implies that \(\dim X = \hat{\sigma}(\hat{\beta}) \) is a real root in \(\Delta(\Gamma)^+ \).

Conversely, let \(\alpha \in \Delta(\Gamma)^+ \). Then by [21 Thm 1], there is a representation \(V \) of \(Q \) over an algebraically closed field \(k = \mathbb{F}_p \) for some prime \(p \) (\(p \) does not divide the order of \(\sigma \)) such that \(V \) is isomorphically invariant indecomposable of dimension vector \(\hat{\sigma}^{-1}(\alpha) \). Suppose \(V \) and all its summands are defined over a finite extension \(\mathbb{F}_q \) of \(\mathbb{F}_p \), where \(q = p^s \) for some \(s \geq 1 \). Then \(V \) is \(F \)-stable by Lemma 10.2 with respect to the Frobenius morphism \(F = F_{Q, \sigma, q} \). This gives rise to an \(A^F \)-module \(V^F \) of dimension vector \(\alpha \). We claim that \(V^F \) is an indecomposable. Indeed, suppose \(V^F = X_1 \oplus X_2 \) with \(X_1 \neq 0 \neq X_2 \). Then

\[
V = V^F \otimes_{\mathbb{F}_q} k \cong (X_1 \otimes_{\mathbb{F}_q} k) \oplus (X_2 \otimes_{\mathbb{F}_q} k).
\]

Since both \(X_1 \otimes_{\mathbb{F}_q} k \) and \(X_2 \otimes_{\mathbb{F}_q} k \) are \(F \)-stable and defined over \(\mathbb{F}_q \), they are isomorphically invariant by Lemma 10.2 again. This contradicts the fact that \(V \) is isomorphically invariant indecomposable. Hence, \(V^F \) is an indecomposable \(A^F \)-module of dimension vector \(\alpha \). This implies that the polynomial \(I_{Q, \sigma}(\alpha, q) \) is non-zero.

Now let \(\alpha = \hat{\sigma}(\hat{\beta}) \) be a real root. Then, by Lemma 10.1, \(\beta \) is real. Again by Kac’s theorem, there is a unique indecomposable \(A \)-module \(M \) with dimension vector \(\beta \). Since \(\dim M^{[t]} = \sigma^t(\dim M) = \dim M \), where \(t \) is minimal such that \(\sigma^t(\beta) = \beta \), we have \(M^{[t]} \cong M \). Hence, by Theorem 5.1 we obtain an \(F \)-stable module

\[
\hat{M} \cong M \oplus M^{[1]} \oplus \cdots \oplus M^{[t-1]}
\]

such that \(\hat{M}^F \) is an indecomposable \(A^F \)-module whose dimension vector is \(\hat{\sigma}(\hat{\beta}) = \alpha \). The uniqueness of such an indecomposable module follows from the fact that \(\beta \) is unique up to \(\sigma \)-orbit.

Remarks 10.4. (1) In the natural \(\mathbb{F}_q \)-modulated quiver case (see Remarks 6.1), this result has been partially proved by Hua [19, Theorem 4.1] and completely proved by Hubery [21 Theorem 24]. Although Theorem 10.3 covers all \(\mathbb{F}_q \)-modulated quivers, the sufficient part in our proof is somewhat indirect, based on Theorem 1 given in [21].
(2) By using the Ringel-Hall algebra approach, it has been proved in [8] that, for any prime power q and dimension vector α, the number $I_{Q,\sigma}(\alpha, q) \neq 0$ if and only if $\alpha \in \Delta(\Gamma)^+$. This is stronger than the statement in Theorem 10.3.

It should still be interesting to find a direct proof of Kac’s theorem in the modulated quiver case. We end the paper with the following conjecture which provides such a direct link of Kac’s theorem with its generalization.

Conjecture 10.5. Let A be the path algebra of an ad-quiver (Q, σ) without oriented cycles. Let $\beta \in \Delta(Q)^+$. Then there exists an indecomposable A-module M with dimension vector β such that $p_F(M) = p_\sigma(\beta)$.

We claim that this conjecture immediately implies that $I_{Q,\sigma}(\alpha, q) \neq 0$ for each $\alpha \in \Delta(\Gamma)^+$. Indeed, for any $\alpha \in \Delta(\Gamma)^+$, there exists a $\beta \in \Delta(Q)^+$ such that $\alpha = \hat{\sigma}(\beta)$. By Kac’s theorem, we have $I_{Q,1}(\beta, q) \neq 0$ for some q. Now the existence of such an M guarantees that the associated F-stable module \tilde{M} defined in (5.0.1) has dimension vector β. Thus, the indecomposable module \tilde{M}_F has dimension vector α. Therefore, $I_{Q,\sigma}(\alpha, q) \neq 0$.

Acknowledgement

The main results of the paper were presented by the second author at the Conference for Representations of Algebraic Groups, Aarhus, June 2–6, 2003, and by both authors at the Workshop on Representation Theory, Canberra, June 30–July 4, 2003. We thank the organizers for the opportunity to attend these conferences. The second author also thanks Wilberd van der Kallen for discussions on Frobenius morphisms over infinite-dimensional vector spaces.

References

