On the Eshelby-Kostrov property for the wave equation in the plane

Authors:
M. A. Herrero, G. E. Oleaga and J. J. L. Velázquez

Journal:
Trans. Amer. Math. Soc. **358** (2006), 3673-3695

MSC (2000):
Primary 74R05, 74B05, 74G70

DOI:
https://doi.org/10.1090/S0002-9947-06-03995-X

Published electronically:
March 28, 2006

MathSciNet review:
2218994

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This work deals with the linear wave equation considered in the whole plane except for a rectilinear moving slit, represented by a curve with Along either homogeneous Dirichlet or Neumann boundary conditions are imposed. We discuss existence and uniqueness for these problems, and derive explicit representation formulae for solutions. The latter have a simple geometrical interpretation, and in particular allow us to derive precise asymptotic expansions for solutions near the tip of the curve. In the Neumann case, we thus recover a classical result in fracture dynamics, namely the form of the stress intensity factor in crack propagation under antiplane shear conditions.

**1.**M. Amestoy and J.B. Leblond: Crack paths in plane situations - II. Detailed form of the expansion of the stress intensity coefficient.*Int. J. Solid Structures*29 (1992), 465-501. MR**1138337****2.**J.D.Eshelby: The elastic field of a crack extending nonuniformly under general antiplane loading.*Journal of the Mechanics and Physics of Solids*17 (1969), 177-199.**3.**G.A. Francfort and C.J. Larsen: Existence and Convergence for Quasi-Static Evolution in Brittle Fracture,*Comm. Pure and Appl. Math.*56 (2003), 1465-1500. MR**1988896 (2004d:49003)****4.**L.B. Freund:**Dynamic Fracture Mechanics**. Cambridge University Press (1998). MR**1054375 (92f:73044)****5.**A. Friedman, B. Hu and J.J.L. Velázquez: The evolution of stress intensity factors and the propagation of cracks in elastic media.*Arch. Rat. Mech. Anal.*152 (2000), 103-139. MR**1760415 (2001h:74026)****6.**A. Friedman, B. Hu and J.J.L. Velázquez: The evolution of stress intensity factors in the propagation of two dimensional cracks.*Euro. Jnl. of Appl. Math.*11 (2000), 453-471. MR**1799921 (2001h:74027)****7.**J. Herrmann and J.R. Walton: A new method for solving dynamically accelerating crack problems. Part I: The case of a semi-infinite mode III crack in elastic material revisited,*Quart. Appl. Math.*50, No. 2 (1992), 373-387. MR**1162281 (93c:73086)****8.**M.A.Herrero, G.E.Oleaga and J.J. Velázquez: A note on planar cracks running along piecewise linear paths.*Proceedings of the Royal Society of London A*460 (2004), 581-601. MR**2034657 (2004j:74116)****9.**F. John:**Partial Differential Equations**. Springer-Verlag, New York (1978). MR**0514404 (80f:35001)****10.**B.V.Kostrov: On the crack propagation with variable velocity.*International Journal of Fracture*11 (1975), 47-56.**11.**J.B. Leblond: Crack paths in plane situations - I. General forms of the expansion of the stress intensity factors.*Int. J. Solid Structures*25 (1981), 1311-1325. MR**1138834****12.**T.L. Leise and J.R. Walton, A general method for solving dynamically accelerating multiple co-linear cracks,*Int. J. Frac.*111 (2001), 1-16.**13.**B. Noble:**Methods based on the Wiener-Hopf Technique**. Pergamon, New York (1958).**14.**V. Saraikin and L. Slepyan: Plane problem of the dynamics of a crack in an elastic solid,*Mechanics of Solids*14 (1979), 46-62. MR**0572877 (81c:73052)****15.**J.R. Willis, Accelerating cracks and related problems, in*Elasticity: Mathematical Methods and Applications*, Ed. G. Eason and R. W. Ogden, Ellis Horwood, Chichester (1990), 397-409.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
74R05,
74B05,
74G70

Retrieve articles in all journals with MSC (2000): 74R05, 74B05, 74G70

Additional Information

**M. A. Herrero**

Affiliation:
Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense, Madrid 28040, Spain

**G. E. Oleaga**

Affiliation:
Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense, Madrid 28040, Spain

**J. J. L. Velázquez**

Affiliation:
Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense, Madrid 28040, Spain

DOI:
https://doi.org/10.1090/S0002-9947-06-03995-X

Received by editor(s):
September 15, 2003

Received by editor(s) in revised form:
September 12, 2004

Published electronically:
March 28, 2006

Article copyright:
© Copyright 2006
American Mathematical Society