EXPOSNENTS FOR B-STABLE IDEALS

ERIC SOMMERS AND JULIANNA TYMOCZKO

Abstract. Let $G$ be a simple algebraic group over the complex numbers containing a Borel subgroup $B$. Given a $B$-stable ideal $I$ in the nilradical of the Lie algebra of $B$, we define natural numbers $m_1, m_2, \ldots, m_k$ which we call ideal exponents. We then propose two conjectures where these exponents arise, proving these conjectures in types $A_n, B_n, C_n$ and some other types.

When $I = 0$, we recover the usual exponents of $G$ by Kostant (1959), and one of our conjectures reduces to a well-known factorization of the Poincaré polynomial of the Weyl group. The other conjecture reduces to a well-known result of Arnold-Brieskorn on the factorization of the characteristic polynomial of the corresponding Coxeter hyperplane arrangement.

1. Introduction

Let $G$ be a simple algebraic group over the complex numbers containing a Borel subgroup $B$. The ideals in the nilradical of the Lie algebra of $B$, which are stable under the action of $B$, have recently attracted much attention.

In this paper we define a sequence of natural numbers $m_1, m_2, \ldots, m_k$ for each $B$-stable ideal $I$, and call them ideal exponents. The definition is a generalization of the usual exponents of $G$ in the case where $I = 0$, via Kostant’s proof relating the heights of positive roots to the exponents [Ko1].

We then conjecture (and prove in type $A_n, B_n, C_n$ and in some other cases) two results about these ideal exponents. The first concerns a Poincaré polynomial defined for each ideal which generalizes the Poincaré polynomial for the Weyl group. The conjecture is that this new polynomial factors according to the ideal exponents just as the usual polynomial factors according to the usual exponents. This result is relevant for the study of regular nilpotent Hessenberg varieties (there is one for each ideal) since the combinatorially defined Poincaré polynomials in this paper should be the actual Poincaré polynomials for these varieties. This is known in many cases, as studied in [Ty].

The second occurrence of these new exponents is in the context of a hyperplane arrangement defined for each ideal. The hyperplane arrangement in question consists of those hyperplanes which correspond to the positive roots whose root space does not belong to the ideal. Generalizing the known result that the usual exponents are the roots of the characteristic polynomial for the full Coxeter arrangement, we conjecture (and prove in the classical types) that the characteristic polynomial of this new hyperplane arrangement has (non-trivial) roots $m_1, m_2, \ldots, m_k$. We also...
speculate that these arrangements are free (which we also prove in the classical types).

The paper concludes with speculation linking these two occurrences of the ideal exponents.

2. Notation

Fix a maximal torus $T$ in $B$ and let $(X, \Phi, Y, \Phi^\vee)$ be the root datum determined by $G$ and $T$, and let $W$ be the Weyl group. Let $\Pi \subset \Phi^+$ denote the simple roots and positive roots determined by $B$. As usual, $\langle \, , \, \rangle$ denotes the pairing of $X$ and $Y$. Let $Q^\vee$ denote the lattice in $Y$ generated by $\Phi^\vee$ (the coroot lattice). We denote the standard partial order on $\Phi$ by $\preceq$; so $\alpha \preceq \beta$ for $\alpha, \beta \in \Phi$ if and only if $\beta - \alpha$ is a sum of positive roots. As is customary, we write $\alpha \prec \beta$ if $\alpha \preceq \beta$ and $\alpha \neq \beta$.

For $\beta \in \Phi$, write $\beta = \sum_{\alpha \in \Pi} c_\alpha \alpha$ and let $ht(\beta) = \sum_{\alpha \in \Pi} c_\alpha$ denote the height of $\beta$.

Given $\alpha \in \Phi$, let $s_\alpha \in W$ denote the corresponding reflection.

We define an ideal (also called an upper order ideal) $I$ of $\Phi^+$ to be a collection of roots such that if $\alpha \in I$, $\beta \in \Phi^+$, and $\alpha + \beta \in \Phi^+$, then $\alpha + \beta \in I$. In other words, if $\alpha \in I$ and $\gamma \in \Phi^+$ with $\alpha \preceq \gamma$, then $\gamma \in I$.

Let $g, b, t$ be the Lie algebras of $G, B, T$, respectively. It is easy to see that $B$-stable ideals in the nilradical $n$ of $b$ are naturally in bijection with the ideals of $\Phi^+$. Namely, if $I$ is a $B$-stable ideal of $n$, it is stable under the action of $T$, hence $I$ is a sum of root spaces. Denote by $I$ the set of roots whose root space is contained in $I$. Then $I$ is an ideal of $\Phi^+$ and this map is a bijection.

3. Ideal exponents

In this section, motivated by Kostant's proof relating the heights of the positive roots and the usual exponents of $G$, we define exponents for each ideal. Our definition is an easy modification: we consider only those positive roots which do not lie in the ideal.

For an ideal $I \subset \Phi^+$, let $I^c = \Phi^+ - I$ be the positive roots not in $I$. Define

$$\lambda_i = \#\{\alpha \in I^c \mid ht(\alpha) = i\}.$$ 

We first observe

**Proposition 3.1.** The $\lambda_i$ give a partition of the number of roots in $I^c$. That is,

$$\lambda_1 \geq \lambda_2 \geq \ldots.$$

In addition, $\lambda_1 > \lambda_2$.

**Proof.** This is easy to check in the classical groups and was checked on a computer in the exceptional groups. \qed

Let $k = \lambda_1$, which is just the number of simple roots in $I^c$. We define $m^\sharp_k \geq \cdots \geq m^\sharp_1$ to be the dual partition of $\lambda_i$. In other words, $m^\sharp_i = \#\{\lambda_j \mid \lambda_j \geq k - i + 1\}$.

**Definition 3.2.** The **ideal exponents** of $I$, also called $I$-exponents, are the natural numbers

$$m^\sharp_k \geq m^\sharp_{k-1} \geq \cdots \geq m^\sharp_1.$$
It follows from the fact that $\lambda_1 > \lambda_2$ that $m_I^2 = 1$. We also observe, as mentioned previously, that when $I = \emptyset$ these are the usual exponents (in this case $k$ equals the rank of $G$ [Ko1].

We suspect that there are many situations where these new exponents will arise. We propose two situations in what follows, namely Theorem 4.1 and Theorem 11.1.

4. Poincaré polynomials for ideals

Let $R \subset \Phi^+$ be any subset of the positive roots. Given $S \subset R$ we say that $S$ is $R$-closed if $\alpha, \beta \in S$ and $\alpha + \beta \in R$, and then also $\alpha + \beta \in S$.

These subsets are analogous to Weyl group elements. Indeed, if $I = \emptyset$ and if $w \in W$, then

$$N(w) := \{ \alpha \in \Phi^+ \mid w(\alpha) \prec 0 \},$$

and its complement in $\Phi^+$ are both $I^c$-closed (in this case, $I^c = \Phi^+$). Conversely every subset of $\Phi^+$ which is $\Phi^+$-closed and whose complement in $\Phi^+$ is $\Phi^+$-closed is equal to $N(w)$ for a unique $w \in W$. This is well known and goes back to [Ko2].

Given this background, we define a subset $S$ of $I^c$ to be of Weyl type for $I$ if both $S$ and $S^c$ are $I^c$-closed. Let $W^I$ denote the subsets of $I^c$ of Weyl type. One of the main results of this paper can now be formulated.

**Theorem 4.1.** Let $I$ be an ideal in $\Phi^+$. Then in types $A_n, B_n, C_n, G_2, F_4, E_6$

$$\sum_{S \in W^I} t^{|S|} = \prod_{i=1}^{k} (1 + t + t^2 + \cdots + t^{m_i^2}),$$

where the $m_i^2$ are the exponents of $I$.

We conjecture that the theorem also holds in the remaining cases. We defer the proof, which is case-by-case, until Section 8.

In the case where $I^c = \Phi^+$, the theorem is well known [Ko1], [Ma]. On the one hand, the $I$-exponents become the usual exponents as mentioned previously. On the other hand, if $l(w)$ denotes the length of $w \in W$ with respect to the set of simple reflections coming from $\Pi$, then $l(w) = |N(w)|$, and so the left-hand side of (1) is equal to

$$\sum_{w \in W} t^{l(w)}.$$

Then (1) becomes the well-known factorization of the Poincaré polynomial of the Weyl group, which is also the Poincaré polynomial of the flag variety $G/B$ when $t$ is replaced by $t^2$.

5. Some old results for general root systems

Many of the results in this paper rely on the following lemma and its corollary. The lemma is well known. We thank Jim Humphreys for simplifying our earlier proof. Jantzen has pointed out to us that Joseph proves some of the equivalences of the lemma in [Jo].

**Lemma 5.1.** Let $x, y \in W$. Then the following four conditions are equivalent:

(i) $N(x) \subseteq N(yx)$.

(ii) $x^{-1}N(y) \subseteq \Phi^+$. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Corollary 5.2. Given that \( y \in W \),
\[
\begin{align*}
(i) & \quad N(xy) = N(x) \cup x^{-1}N(y) \\
(ii) & \quad l(xy) = l(x) + l(y) \\
(iii) & \quad N(yx) = N(x) \cup x^{-1}N(y) \\
(iv) & \quad l(yx) = l(y) + l(x).
\end{align*}
\]

Proof. Certainly (iii) implies (ii) by definition. Next

\[
N(x) \subseteq N(xy) \text{ if and only if } x^{-1}N(y) \subseteq \Phi^+.
\]

since \( \alpha \in x^{-1}N(y) \) with \( \alpha < 0 \) if and only if \( -\alpha \in N(x) \) and \( -\alpha \notin N(yx) \). This shows the equivalence of (i) and (ii).

It is easy to check from the definitions that

\[
N(yx) \subseteq N(x) \cup x^{-1}N(y),
\]

where the union is a disjoint union. Also

\[
l(yx) \leq l(x) + l(y),
\]

which implies that

\[
|N(yx)| \leq |N(x)| + |N(y)| = |N(x)| + |x^{-1}N(y)|.
\]

Hence equality in (iv) is equivalent to equality in (iii), which shows that (iii) and (iv) are equivalent. Finally, it is clear that

\[
x^{-1}N(y) \cap \Phi^+ \subseteq N(xy),
\]

so if (i) holds so does (iii) by (2) and (3).

The next corollary follows from the lemma by taking a reduced expression for \( y = wx^{-1} = s_\beta \cdots s_\alpha \), where \( \alpha, \beta \in \Pi \).

Corollary 5.2. Given \( x, w \in W \). If \( N(x) \subseteq N(w) \), then there exists \( \alpha, \beta \in \Pi \) so that

\[
N(x) \subseteq N(s_\alpha x) \subseteq N(w) \quad \text{and} \quad N(x) \subseteq N(s_\beta w) \subseteq N(w).
\]

We conclude the section with a well-known lemma related to the minimal length coset representatives of a parabolic subgroup of \( W \). We include a proof since we refer to the proof in what follows.

Let \( \Phi' \subset \Phi \) be a parabolic subsystem. In other words, \( \Phi' \) has a basis of simple roots which is contained in the simple roots \( \Pi \) of \( \Phi \). Let \( \Phi^1 = \Phi^+ - \Phi'^+ \) and let \( W' \subset W \) be the Weyl group of \( \Phi' \).

Lemma 5.3. The set \( C := \{ x \in W \mid N(x) \subseteq \Phi^1 \} \) is a set of distinct coset representatives for \( W' \) in \( W \).

Proof. Take \( w \in W \). The intersection \( N(w) \cap \Phi' \) is of Weyl type for \( \Phi' \). Thus

\[
N(w) \cap \Phi' = N(x)
\]

for some \( x \in W' \), where \( N(x) \) is the same whether computed in \( W' \) or \( W \). Now \( N(x) \subseteq N(w) \), so by Lemma 5.1, we have that \( y = wx^{-1} \) satisfies

\[
x^{-1}N(y) = N(w) - N(x).
\]

Hence \( x^{-1}N(y) \subseteq \Phi^1 \) by the definition of \( x \). Consequently \( N(y) \subseteq \Phi^1 \) as \( x \in W' \) and \( W' \) preserves \( \Phi^1 \). Certainly, \( wW' = yxW' = yW' \), which shows that the elements of \( C \) are a set of coset representatives.

They must be distinct representatives. Indeed, suppose \( y = zx \) for \( y, z \in C \) and some \( x \in W' \). Then \( x^{-1}N(z) \subseteq \Phi^1 \) since \( W' \) preserves \( \Phi^1 \). Then Lemma 5.1 implies that \( N(x) \subseteq N(y) \subseteq \Phi^1 \), forcing \( x = 1 \) since also \( N(x) \subseteq \Phi' \) and so \( y = z \).
6. Some new results for general root systems

The first new result of this paper is a generalization of the fact that every subset of $P^+$ of Weyl type is of the form $N(w)$ for some $w \in W$. On the one hand, it is easy to see that $N(w) \cap T^c$ for $w \in W$ is always of Weyl type in $T^c$. But the converse is also true. Namely, every subset $S$ of $T^c$ of Weyl type is of the form $N(w) \cap T^c$ for some $w \in W$. That is,

**Proposition 6.1.** Let $S \in W^c$. There exists $w \in W$ such that $S = N(w) \cap T^c$.

*Proof.* This is equivalent to showing that there exists $T \in W^0$ for which $S = T \cap T^c$, since we already know the result is true when $T = 0$. In fact, it is enough to prove that given an ideal $T$ where $T = T^c \cup \{\delta\}$ for $\delta \in P^+$, we can find $T \in W^T$, where $S = T \cap T^c$. Then the result would follow by induction as there is always a sequence $T^c = T_0^c \subseteq T_1^c \subseteq \cdots \subseteq T_n^c = P^+$, such that $T_i$ is an ideal and $|T_{i+1}| = |T_i| + 1$.

There are four possible situations given the above setup:

1. $S, S \cup \{\delta\} \in W^T$.
2. $S \in W^T, S \cup \{\delta\} \notin W^T$.
3. $S \notin W^T, S \cup \{\delta\} \in W^T$.
4. $S \cup \{\delta\} \notin W^T$.

Assuming one of the first three possibilities arises, one of $S$ or $S \cup \{\delta\}$ (or in the first case both) would suffice for $T$. The proposition is therefore equivalent to the last possibility never occurring.

The last possibility would only occur if there exists $\alpha, \beta \in S$ and $\alpha', \beta' \in T^c - S$ for which $\alpha + \beta = \delta = \alpha' + \beta'$. If so, then

$$-\alpha' + \alpha + \beta = \beta'.$$

By Lemma 3.2 in [So], either $-\alpha' + \alpha$ or $-\alpha' + \beta$ lies in $P \cup \{0\}$. Since $\alpha, \beta \in S$ and $\alpha' \notin S$, neither $-\alpha' + \alpha$ nor $-\alpha' + \beta$ can be zero. Without loss of generality, we take $-\alpha' + \alpha \in P$, and by possibly interchanging the roles of $\alpha$ and $\alpha'$ in what follows, we may assume $-\alpha' + \alpha \in P^+$.

On the one hand, $(-\alpha' + \alpha) + \alpha' = \alpha$. Now since $T$ is an ideal and $\alpha \in T^c$ and $-\alpha' + \alpha \in T^c$, then $-\alpha' + \alpha \in T^c$. It follows that $-\alpha' + \alpha \in S$, since $\alpha' \notin S$ and $\alpha \in S$ and otherwise $S = T^c - S$ would not be $T^c$-closed.

On the other hand, $-\alpha' + \alpha = \beta' - \beta \in T^c$. Clearly, $(\beta' - \beta) + \beta = \beta'$. Then $\beta' - \beta \notin S$, since $\beta \in S$ and $\beta' \notin S$ and otherwise $S = T^c$ would not be $T^c$-closed. This contradicts the fact that $-\alpha' + \alpha = \beta' - \beta \in S$ from the previous paragraph.

It follows that $T$ can be chosen to be one of $S$ or $S \cup \{\delta\}$ (or possibly both), proving the proposition. \hfill \Box

Although there is not always a unique $w \in W$ satisfying the hypotheses of the proposition, there is a unique $w$ with the property that $N(w)$ is contained in $N(w')$ for any other $w' \in W$ satisfying the hypotheses of the proposition. More generally,

**Proposition 6.2.** Let $T \subseteq T$ be ideals. Given $S \in W^T$, there exists $T \in W^T$ with the property that $S = T \cap T^c$, and if $T \in W^T$ satisfies $S \subseteq T$, then $T \subseteq T$. Such a $T$ is clearly unique.
Proof: The proof is by induction on the difference in cardinalities $l = |I| - |I'|$. The case $l = 0$ is trivial, with $T = S$. If $l > 0$, pick an ideal $I_1$ such that

$$I' \subseteq I_1 \subseteq I,$$

where $I^c = I_1 \cup \{\delta\}$ for some $\delta \in \Phi^+$. By induction there exists $T_1 \in \mathcal{W}^{I_1}$ satisfying the hypotheses of the proposition with respect to $I_1 \subseteq I$ and $S \in \mathcal{W}^I$.

Set $T = T_1$ if $T_1 \in \mathcal{W}^{I'}$, or else set $T = T_1 \cup \{\delta\}$ if $T_1 \notin \mathcal{W}^{I'}$. In either case the proof of the previous proposition ensures that $T \in \mathcal{W}^{I'}$.

Now suppose that $\hat{T} \in \mathcal{W}^{I'}$ satisfies $S \subseteq \hat{T}$. Since $I_1^c \subseteq I^c$, it is clear that $\hat{T} \cap I_1^c \in \mathcal{W}^{I_1}$. Then the minimal property for $T_1$ gives that

$$T_1 \subseteq \hat{T} \cap I_1^c.$$

Hence $T_1 \subseteq \hat{T}$. We deduce that $T \subseteq \hat{T}$. Indeed, $T = T_1 \cup \{\delta\}$ only when there exist $\alpha, \beta \in T_1$ with $\alpha + \beta = \delta$. Since $T_1 \subseteq \hat{T}$ and $\hat{T}$ is $I^c$-closed, we must have $\delta \in \hat{T}$. □

There is a nice characterization of the $w \in W$ for which $T = N(w)$ satisfies the minimal condition of Proposition 6.2 when $I' = \emptyset$.

**Proposition 6.3.** Given $S \in \mathcal{W}^{I'}$ there is a unique $w \in W$ satisfying both $S = N(w) \cap I^c$ and

$$(5) \quad w^{-1}(-\Pi) \cap \Phi^+ \subseteq I^c.$$

Furthermore, $N(w) \subseteq N(y)$ for any $y \in W$ with $S \subseteq N(y)$.

Proof. Let $w$ be such that $T = N(w)$ satisfies the minimal property from Proposition 6.2 for $I' = \emptyset$ and $S$.

Suppose there exists a simple root $\alpha \in \Pi$ for which

$$w^{-1}(-\alpha) \in \Phi^+ - I^c.$$

Consider $x = s_\alpha w$. Then

$$w^{-1}(-\alpha) = x^{-1}(\alpha) \in \Phi^+, \quad \text{and so Lemma 5.1 implies that}$$

$$N(w) = N(x) \cup \{w^{-1}(-\alpha)\}.$$ 

But $w^{-1}(-\alpha) \notin I^c$ and therefore

$$N(x) \cap I^c = N(w) \cap I^c,$$

contradicting the minimal property of $N(w)$. Hence we must have

$$w^{-1}(-\Pi) \cap \Phi^+ \subseteq I^c.$$

For the uniqueness, take $y \in W$ with $S = N(y) \cap I^c$ and $y \neq w$. Then $N(w) \subseteq N(y)$ by Proposition 6.2. By Corollary 5.2 there exists $\alpha \in \Pi$ such that

$$N(w) \subseteq N(s_\alpha y) \subseteq N(y),$$

and this implies that $N(y) = N(s_\alpha y) \cup \{y^{-1}(-\alpha)\}$. It follows that $y^{-1}(-\alpha) \notin I^c$ since

$$N(y) \cap I^c = N(w) \cap I^c$$

and hence $y^{-1}(-\Pi) \cap \Phi^+ \notin I^c$. This shows that $w$ is unique. □
7. Further results for types $A_n, B_n, C_n$

In this section we explore some properties which are particular to types $A_n, B_n, C_n$ and which are used in the proof of Theorem 4.1.

We label the simple roots in types $B_n$ and $C_n$ so that $\alpha_n$ is the only simple root of its length. For each root system of type $X_n$, we embed $X_{n-1}$ in $X_n$ via the simple roots $\alpha_2, \ldots, \alpha_n$. Denote by $\Phi_{n-1}$ the roots of $X_{n-1}$ and let

$$\Phi^1 = \Phi^+ - \Phi^+_{n-1}.$$ 

Let $W' \subset W$ be the Weyl group of $X_{n-1}$. One of the key facts about these root systems is that $\Phi^1$ is linearly ordered under $\prec$ and there is only root of each height from 1 to the largest height ($n$ in type $A_n$ and $2n-1$ in types $B_n, C_n$).

In addition,

Lemma 7.1. Given $\alpha, \beta \in \Phi^1$ with $\alpha \prec \beta$, we always have

$$\beta - b\alpha = c\gamma$$ 

for some $\gamma \in \Phi_{n-1}$ and some $b, c \in \{1, 2\}$.

Proof. The roots in $\Phi^1$ (in a standard basis) are

- $\{e_1 - e_j \mid j = 2, 3, \ldots, n\}$ for $A_{n-1}$,
- $\{e_1 \pm e_j \mid j = 2, 3, \ldots, n\} \cup \{e_1\}$ for $B_n$,
- $\{e_1 \pm e_j \mid j = 2, 3, \ldots, n\} \cup \{2e_1\}$ for $C_n$.

These roots are ordered as follows:

$$e_1 - e_2 \prec \cdots \prec e_1 - e_n \prec e_1 \prec e_1 + e_n \prec \cdots \prec e_1 + e_2 \prec 2e_1,$$

whenever the given root is present in the appropriate root system.

It is easy to see in type $A_{n-1}$ that $\beta - \alpha \in \Phi^+_{n-2}$ (as desired, given the shift in subscript).

In type $B_n$, $\beta - \alpha \in \Phi^+_{n-1}$, unless $\beta = e_1 + e_j$ and $\alpha = e_1 - e_j$, in which case $\beta - \alpha = 2\gamma$ for some $\gamma \in \Phi^+_{n-1}$.

In type $C_n$, we have $\beta - \alpha \in \Phi^+_{n-1}$, except when $\beta = 2e_1$, the highest root. In that case, we can say that $\beta - 2\alpha \in \Phi^+_{n-1}$. \hfill $\square$

Lemma 7.2. In types $A_n, B_n, C_n$, for each $k \in \{0, 1, \ldots, |\Phi^1|\}$, there is a unique element $x \in W$ satisfying $N(x) \subseteq \Phi^1$ and $|N(x)| = k$.

Proof. Certainly there exists a unique $w^1$ with $N(w^1) = \Phi^1$ since $\Phi^1 \in W^0$. Explicitly, $w^1$ is the product of the long element of $W$ and the long element of $W'$, using, for example, Lemma 5.1. It follows that there exists at least one $x \in W$ satisfying $N(x) \subseteq \Phi^1$ and $|N(x)| = k$ from Corollary 5.2 by taking any reduced expression for $w^1$.

We still need to show uniqueness. Let $x \in W$ satisfy $N(x) \subseteq \Phi^1$ and assume uniqueness is true when $k > |N(x)|$. Since $N(x) \subseteq N(w^1)$, Corollary 5.2 implies the existence of $\alpha \in \Pi$ such that

$$N(x) \subseteq N(s_\alpha x) \subseteq N(w^1),$$

where $N(s_\alpha x) = N(x) \cup \{x^{-1}(\alpha)\}$. Since $N(s_\alpha x) \subseteq N(w^1) = \Phi^1$, we have

$$x^{-1}(\alpha) \in \Phi^1.$$
We claim that $\alpha$ is unique. Indeed, assume that $\beta \in \Pi$ and \( x^{-1}(\beta) \in \Phi^1 \) with $\beta \neq \alpha$. Without loss of generality (since $\Phi^1$ is linearly ordered), \( x^{-1}(\alpha) \prec x^{-1}(\beta) \). By Lemma 7.1, \( x^{-1}(\beta) - bx^{-1}(\alpha) = c\gamma \) for some $b, c$ and $\gamma \in \Phi_{n-1}$. Applying $x$ to both sides yields $\beta - bx = cx(\gamma)$. This is impossible since the right side is a linear combination of simple roots with either all positive or all negative coefficients, whereas the left side is a combination of two simple roots whose coefficients have opposite signs. Since $s_\alpha x$ is unique by induction, $x$ is unique and the result follows.

\[ \Box \]

8. Proof of Theorem 4.1 for Types $A_n, B_n, C_n$

Assume the factorization is true for $\Phi_{n-1}$. Clearly $I^c \cap \Phi_{n-1}$ is equal to $I^c$ for some ideal $I'$ for $\Phi_{n-1}$. Let $m_1, \ldots, m_{k-1}$ be the $I'$-exponents.

As noted in the previous section, the roots of $\Phi^1 = \Phi^+ - \Phi^-_{n-1}$ are linearly ordered and so contain one root of each height. It follows that $I^c \cap \Phi^1$ contains one root of height $1, 2, \ldots, m_k$ for some natural number $m_k$, and that the $I'$-exponents are $m_k$ together with the $I'$-exponents $m_1, m_2, \ldots, m_{k-1}$ (in this indexing, $m_k$ need not be the largest exponent).

Next it is certainly true that if $S \in \mathcal{W}^I$, then $S \cap \Phi_{n-1} \in \mathcal{W}^I$. We have a strong converse which holds in types $A_n, B_n, C_n$:

**Lemma 8.1.** Let $S' \in \mathcal{W}^I$. For each $j \in \{0, 1, \ldots, |\Phi^1| \}$, there exists a unique $S \in \mathcal{W}^I$ with $S \cap \Phi_{n-1} = S'$ and $|S \cap \Phi^1| = j$.

**Proof.** Let $w' \in W'$ be the unique element with the property that $N(w') \cap I^c = S'$ and $N(w') \subseteq N(x)$ for any $x \in W$ with $N(x) \cap I^c = S'$ as in Proposition 6.2.

Let \( \{x_0 = 1, x_1, \ldots, x_i, \ldots \} \) be the elements from Lemma 7.2 with $|N(x_i)| = i$. Note that

\[ N(x_i) \subseteq N(x_{i+1}) \]

from the existence part of the proof of that lemma.

Consider the elements $x_iw'$. As in the proof of Lemma 5.3,

\[ N(x_iw') = N(w') \cup w'^{-1}N(x_i), \]

where $w'^{-1}N(x_i) \subseteq \Phi^1$. It follows that $N(x_iw') \subseteq N(x_{i+1}w')$ and the two sets differ by a single element of $\Phi^1$.

Next, consider the intersection

\[ N(x_iw') \cap I^c \cap \Phi^1. \]

This intersection is empty for $i = 0$ and has $m_k$ elements when $i = n$ in type $A_n$ and when $i = 2n - 1$ in types $B_n$ and $C_n$. From the previous paragraph, we know that $N(x_{i+1}w') \cap I^c \cap \Phi^1$ and $N(x_iw') \cap I^c \cap \Phi^1$ can differ by at most one element. Consequently, for some $i$ we have that $S := N(x_iw') \cap I^c$ satisfies $S \cap \Phi_{n-1} = S'$ and $|S \cap \Phi^1| = j$ has the desired cardinality. This gives existence. It would also give uniqueness if we knew that every $S$ is of the form $N(x_iw') \cap I^c$ for some $i$.

To that end, suppose that $S \in \mathcal{W}^I$ and $S \cap \Phi_{n-1} = S'$. Let $w \in W$ be the unique element with the property that $N(w) \cap I^c = S$ and $N(w) \subseteq N(x)$ for any $x \in W$ with $S \subseteq N(x)$ as in Proposition 6.2.

Write $w = x_{i,y}$ for $y \in W'$ by Lemma 5.3. By (7) and the line following it, $N(y) = N(w) \cap \Phi_{n-1}$. The latter contains $S'$ by the definition of $w$. Thus there exists $i'$ so that

\[ S \subseteq N(x_{i',w'}), \]
simply by taking the largest possible value of $i'$. By Proposition 6.2, we get
$N(x, y) \subseteq N(x_i, w')$ and thus $N(y) \subseteq N(w')$ after intersecting with $\Phi_{n-1}$. Now
Proposition 6.2 applied to $w'$ gives the equality $N(y) = N(w')$ and so $w' = y$. It
follows that $w = x_iw'$, showing uniqueness of $S$. □

Proof of Theorem 4.1. By the previous lemma, if we consider the sum $\sum_{S} t^{|S|}$ over
all $S \in W^I$ with $S \cap \Phi_{n-1} = S'$ for some $S' \in W^{I'}$, then the sum equals

$$t^{|S'|}(1 + t + t^2 + \cdots + t^{m_k}).$$

Thus

$$\sum_{S \in W^I} t^{|S|} = \sum_{S' \in W^{I'}} t^{|S'|}(1 + t + t^2 + \cdots + t^{m_k})$$

$$= (1 + t + t^2 + \cdots + t^{m_k}) \prod_{i=1}^{k-1} (1 + t + t^2 + \cdots + t^{m_i}),$$

where the last step is by induction. This completes the proof of the theorem in
types $A_n, B_n, C_n$. This proof also works in type $G_2$. In types $F_4$ and $E_6$, the
theorem was checked on a computer, running through all possible ideals. There are
105 ideals in $F_4$ and 833 of them in $E_6$.

9. A UNIFORM PROOF FOR THE PENULTIMATE IDEAL

The goal for this section is to prove Theorem 4.1 uniformly when $I = \{\theta\}$, where
$\theta$ is the highest root of $\Phi^+$. The next result is a special case of Theorem 2.8 in [Ma]. For $\gamma$ in $X$ (the weight
lattice), let $e^{\gamma}$ denote the corresponding element of the group algebra $\mathbb{Z}[X]$ of $X$.

Proposition 9.1 ([Ma]). Let $R \subset \Phi^+$ be any subset of the positive roots. The
following identity holds:

$$(8) \quad \sum_{w \in W} \prod_{\alpha \in R} \frac{1 - te^{w_{\alpha}}}{1 - e^{w_{\alpha}}} = \sum_{w \in W} t^{|N(w) \cap |R|}.$$

Proof. In Theorem 2.8 of [Ma], set $u_\alpha = t$ if $\alpha \in R$ and set $u_\alpha = 1$ if $\alpha \notin R$. □

When $R = I^c$ for some ideal $I$, the right-side of (8) is the Poincaré polynomial
(after replacing $t$ by $t^2$) of a regular semisimple Hessenberg variety (see the next
section) by work of [MPS]. In that case, the identity can be proven by a fixed-point
formula as in [Ma], since these Hessenberg varieties are smooth and projective
(generalizing the role of the flag variety in Macdonald’s fixed-point formula proof).

We now use this identity to prove Theorem 4.1 uniformly for any root system
when $I = \{\theta\}$.

Theorem 9.2. In all types when $I = \{\theta\}$,

$$\sum_{S \in W^I} t^{|S|} = \prod_{i=1}^{n} (1 + t + t^2 + \cdots + t^{m_i^I}),$$

where the $m_i^I$ are the exponents of $I$. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof: In (8), put \( R = \mathcal{I}^c = \Phi^+ - \{ \theta \} \) and specialize \( e^\alpha \) to \( t^{\text{ht}(\alpha)} \) as in [Ma]. Then we have

\[
\sum_{w \in W} \prod_{\alpha \in \mathcal{I}^c} \frac{1 - t^{\text{ht}(w\alpha)} + 1}{1 - t^{\text{ht}(w\alpha)}} = \sum_{w \in W} t^{|N(w) \cap \mathcal{I}^c|}.
\]

We will break apart the sum on the left side into two parts, according to whether \( w \in W \) satisfies (5). Let \( W_{\min} \) denote those elements of \( W \) satisfying (5) for \( \mathcal{I} \).

Let \( w \in W_{\min} \) with \( w \neq 1 \). Then \( w^{-1}(\alpha) \in \Phi^+ \) for some \( \alpha \in \Pi \) since \( w \neq 1 \). Then \( \beta := w^{-1}(\alpha) \in \mathcal{I}^c \) by (5), since \( w \in W_{\min} \). Since \( \text{ht}(w\beta) = -1 \), the term for \( w \) vanishes in the sum on the left. This leaves only the identity term as the contribution from the elements in \( W_{\min} \).

Therefore the sum on the left side reduces to

\[
\prod_{\alpha \in \mathcal{I}^c} \frac{1 - t^{\text{ht}(\alpha)} + 1}{1 - t^{\text{ht}(\alpha)}} + \sum_{w \notin W_{\min}} \prod_{\alpha \in \mathcal{I}^c} \frac{1 - t^{\text{ht}(w\alpha)} + 1}{1 - t^{\text{ht}(w\alpha)}}.
\]

The isolated product is exactly the right side of Theorem 9.2. To finish the proof we must, by Proposition [6.3] show that the sum in (9) is equal to

\[
\sum_{w \notin W_{\min}} t^{|N(w) \cap \mathcal{I}^c|}.
\]

We divide \( \mathcal{I}^c \) into two parts: let

\[
\mathcal{I}^c_i = \{ \gamma \in \mathcal{I}^c \mid (\gamma, \theta) = i \}
\]

for \( i = 0, 1 \) (the only two possibilities since \( \theta \) is the highest root). The roots of \( \mathcal{I}^c_0 \) are the positive roots of a parabolic subsystem of \( \Phi \), with corresponding Weyl group \( W_\theta \). These are exactly the elements of \( W \) which fix \( \theta \).

Given \( \gamma \in \mathcal{I}^c_0 \), we have \( s_\theta(-\gamma) = \theta - \gamma \), which is a positive root. Hence also \( s_\theta(-\gamma) \in \mathcal{I}^c_1 \) and \( \gamma + s_\theta(-\gamma) = \theta \). This shows that elements of \( \mathcal{I}^c_0 \) come in pairs which sum up to \( \theta \).

Take \( w \notin W_{\min} \). Then \( w\theta \in \Pi \) and thus \( \text{ht}(w\theta) = -1 \). Suppose that \( \alpha + \beta = \theta \) for \( \alpha, \beta \in \mathcal{I}^c_1 \). Then

\[
\text{ht}(w\alpha) + \text{ht}(w\beta) = -1.
\]

Consequently, exactly one of \( \alpha \) and \( \beta \) belongs to \( N(w) \cap \mathcal{I}^c \), and thus

\[
|N(w) \cap \mathcal{I}^c_1| = \frac{1}{2} |\mathcal{I}^c_1|
\]

for all \( w \notin W_{\min} \).

On the other hand, the identity

\[
\frac{1 - t^{a+1}}{1 - t^a} \cdot \frac{1 - t^{-a}}{1 - t^{-a-1}} = t
\]

and (10) imply that

\[
\prod_{\alpha \in \mathcal{I}^c_1} \frac{1 - t^{\text{ht}(w\alpha)+1}}{1 - t^{\text{ht}(w\alpha)}} = t^{|\mathcal{I}^c_1|}
\]

for \( w \notin W_{\min} \).

Therefore the proof will be completed if we can show that

\[
\sum_{w \notin W_{\min}} \prod_{\alpha \in \mathcal{I}^c_0} \frac{1 - t^{\text{ht}(w\alpha)+1}}{1 - t^{\text{ht}(w\alpha)}} = \sum_{w \notin W_{\min}} t^{|N(w) \cap \mathcal{I}^c_0|}.
\]
We can do this by using (8) for the Weyl group $W_\theta$. First we observe that the action of $W_\theta$ on $W$ preserves $W_{min}$, and so $W_{min}$ and its complement are a union of left cosets of $W_\theta$.

Pick $x \not\in W_{min}$. Then
\[
\sum_{w \in xW_\theta} \prod_{\alpha \in I_c} \frac{1 - t^{ht(\alpha)} + 1}{1 - t^{ht(w\alpha)}} = \sum_{y \in W_\theta} \prod_{\alpha \in I_c} \frac{1 - t^{ht(xy\alpha)} + 1}{1 - t^{ht(y\alpha)}}.
\]

In (8) applied now for the case of the Weyl group $W_\theta$, set $e^\alpha = t^{ht(x\alpha)}$, where the height is still calculated with respect to $W$ (since $x\alpha$ need not belong to the root system of $W_\theta$). The positive roots for $W_\theta$ are $I_c$, so (11) is equal to
\[
\sum_{y \in W_\theta} t^{\mid N(y) \cap I_c \mid},
\]
which is the same thing as
\[
\sum_{w \in xW_\theta} t^{\mid N(w) \cap I_c \mid}
\]
for any $x \in W$. Indeed, we may choose $x$ such that $N(x) \subset \Phi^+ - I_c$ by Lemma 5.3. Then Lemma 5.1 implies that $N(xw_1) \cap I_c = N(w_1) \cap I_c$ for $w_1 \in W_\theta$, which is what we needed.

The proof is completed since $W_{min}$ is a union of left cosets of $W_\theta$. \[\square\]

10. POINCARÉ POLYNOMIALS OF REGULAR NILPOTENT HESSENGER VARIETIES

The combinatorial Poincaré polynomials from Theorem 4.1 should arise as the actual topological Poincaré polynomials of certain projective subvarieties of the flag variety. This section defines these subvarieties, called regular nilpotent Hessenberg varieties, and lists some of their main properties.

Write $B^-$ for the Borel subgroup opposite to $B$ and $b^-$ for its Lie algebra.

Given an ideal $I$, we define
\[
H_I = b^- \oplus \bigoplus_{\alpha \in I_c} g_\alpha,
\]
where $g_\alpha \subset g$ is the $\alpha$-weight space. The subspace $H_I$ is stable for the action of $B^-$, and it is easy to see that each subspace with this property is of the above form. Such a subspace is called a Hessenberg space.

Fix an element $X \in g$ and a Hessenberg space $H = H_T$. The Hessenberg variety $B_{X,H}$ is the subvariety of the flag variety $B = G/B^-$ defined by
\[
B_{X,H} = \{ gB^- \mid \text{Ad}(g^{-1})(X) \in H \}.
\]
This is a closed subvariety of $B$ and hence is projective. In general a Hessenberg variety is not smooth. Hessenberg varieties were first defined in [MPS].

When $I = \Phi^+$ and thus $H = b^-$, the Hessenberg variety reduces to a Springer variety, a well-studied and important object in representation theory. At the other end of the spectrum, when $I = 0$, the Hessenberg variety is the whole flag variety, independent of $X$. In between, when $I_c$ is the set of simple roots and $X$ is regular nilpotent, the Hessenberg variety is called the Peterson variety and has been used to give geometric constructions for the quantum cohomology of the flag variety (see [Ko3], [R]). Other Hessenberg varieties have been used in [GKM] to give a partial proof of the fundamental lemma of the Langlands program.
The following proposition concerning $B_{X,H}$ follows from work in [Ty]. Let $B^{-wB^-} \subset B$ be the Schubert cell containing the point $wB^-$, where $w \in W$. Here we do not distinguish between $w \in W$ and a representative of $w$ in $G$.

**Proposition 10.1.** Let $G$ be of classical type and let $X$ be a sum of negative simple root vectors. Let $C_w := B^{-wB^-} \cap B_{X,H}$. Then $C_w$ is non-empty if and only if $w$ satisfies (5) for $\mathcal{T}$. If $C_w$ is non-empty, then it is an affine space of dimension $|N(w) \cap \mathcal{T}^\circ|$.

This yields an affine paving of $B_{X,H}$.

This proposition allows us to demonstrate that the Poincaré polynomials for regular nilpotent Hessenberg varieties are the polynomials which arise in Theorem 4.1.

**Theorem 10.2.** Let $P_\mathcal{T}(t)$ denote the Poincaré polynomial of the Hessenberg variety $B_{X,H}$ for $X$ a regular nilpotent element. In types $A_n$, $B_n$, and $C_n$ this can be factored

$$P_\mathcal{T}(t) = \prod_{i=1}^k (1 + t + \cdots + t^{m_i^\mathcal{T}}).$$

**Proof.** Proposition 6.3 shows that for each $S \in W^\mathcal{T}$ there is exactly one $w \in W$ satisfying (5) and $S = N(w) \cap \mathcal{T}^\circ$. Proposition 10.1 shows that the dimension of the affine cell $C_w$ is $|N(w) \cap \mathcal{T}^\circ| = |S|$ and that $C_w$ is empty if $w$ does not satisfy (5). The proof follows from the fact that these cells give an affine paving of the variety together with Theorem 4.1. □

We should mention that if one knew that Proposition 10.1 were true in all types, then a result of Peterson announced in [BC] would be equivalent to Theorem 4.1. Unfortunately Peterson’s proof is not given. One could imagine something along the lines of [AC] if the regular nilpotent Hessenberg varieties were smooth. But this is not the case, already in type $A_2$.

11. HYPERPLANE ARRANGEMENT DEFINED BY AN IDEAL

The second venue where the $\mathcal{T}$-exponents arise is in the context of hyperplane arrangements. Let $V := Q^\vee \otimes \mathbb{R}$ be the ambient vector space containing the coroot lattice $Q^\vee$. For each $\alpha \in \Phi^+$, let $H_\alpha \subset V$ be the hyperplane

$$H_\alpha = \{ v \in V \mid \langle \alpha, v \rangle = 0 \}.$$

We are interested in the hyperplane arrangement in $V$ given by the hyperplanes $H_\alpha$, where $\alpha \in \mathcal{T}^\circ$. We will denote this arrangement by $\mathcal{A}_\mathcal{T}$ and call it an arrangement of ideal type in $\Phi_n$.

In general, given a hyperplane arrangement, one is interested in whether the arrangement is free, and if so, what the roots are of its characteristic polynomial, which are also called exponents [OT].

We briefly recall the basic definitions and theorems about hyperplane arrangements from Chapters 2 and 4 of [OT]. Let $\mathcal{A}$ be an arrangement of hyperplanes in the $\mathbb{R}$-vector space $V$. Let $S(V^*)$ denote the symmetric algebra on the dual space $V^*$ of $V$. Given $H \in \mathcal{A}$, let $\alpha_H \in V^*$ be a non-zero linear functional vanishing on $H$. Set

$$Q(\mathcal{A}) = \prod_{H \in \mathcal{A}} \alpha_H.$$
Let $D(A)$ denote the $\mathbb{R}$-linear derivations of $S(V^*)$ which preserve the ideal generated by $Q(A)$. Then the hyperplane arrangement $A$ is said to be free if $D(A)$ is a free $S(V^*)$-module.

Let $L = L(A)$ denote the set of non-empty intersections of the elements of $A$. This is a poset with a partial order given by reverse inclusion, with minimal element $V$. Define a function $\mu$ on $L$ as follows. Set $\mu(V) = 1$ and define $\mu(X)$ recursively for $X \in L$ by the formula

$$
\mu(X) = - \sum_{V \leq Z < X} \mu(Z),
$$

where the sum is over all $Z \in L$ with $V \leq Z < X$. Then the characteristic polynomial $\chi(A, t)$ of $A$ is defined as

$$
\chi(A, t) = \sum_{X \in L} \mu(X)t^{\dim(X)}.
$$

The factorization result of Terao (see Theorem 4.137 in [OT]) states that if $A$ is free, then all of the roots of $\chi(A, t)$ are non-negative integers, called the exponents of $A$. These exponents coincide with the polynomial degrees of a set of homogeneous generators of $D(A)$ as an $S(V^*)$-module.

There is another key property of hyperplane arrangements. Given $H_0 \in A$, let $A'$ denote the arrangement in $V$ obtained by omitting the hyperplane $H_0$ from $A$. This is the deleted arrangement given by $H_0$. Let $A''$ denote the arrangement in $H_0$ given by the non-empty intersections $H \cap H_0$ for $H \in A$ with $H \neq H_0$. This is the restricted arrangement given by $H_0$. The three arrangements $(A, A', A'')$ are called a triple of arrangements.

We will use the following direction of the Addition-Deletion Theorem of Terao in what follows (see Theorem 4.51 in [OT]). If $A'$ is free with exponents $b_1, \ldots, b_k - 1$, $b_k - 1$ and if $A''$ is free with exponents $b_1, \ldots, b_k - 1$, then $A$ is free with exponents $b_1, \ldots, b_k$. If we wished only to know about the implication involving the exponents, this result goes back to Brylawski and Zaslavsky (see Theorem 2.56 in [OT]).

**Theorem 11.1.** Except possibly in types $F_4, E_6, E_7, E_8$, the hyperplane arrangement $A_T$ is free, and its non-zero exponents are $m_1^T, \ldots, m_k^T$. There are also $n - k$ exponents equal to 0.

**Proof.** We will show that $A_T$ is free with the desired exponents by using the Addition-Deletion Theorem. First assume that $X_n$ is of type $A_n, B_n, C_n$ and assume the result for any ideal $I_1$ properly containing $I$. Furthermore assume the result for root systems of smaller rank of these types. The theorem is clearly true for the base case where $I = \Phi^+$, since the arrangement is empty.

Let $I_1$ be the unique ideal for which $I_1 = I \cup \{\delta\}$, where $\delta$ is the maximal root in $\Phi_1 \cap \mathcal{I}$. Of course, if the latter intersection is empty, then we are already done, since the arrangement is the direct product of the one-dimensional empty arrangement and an arrangement of ideal type in $\Phi_{n-1}$.

Now by induction $A_{I_1}$ is free and its non-zero exponents are

$$
m_1^T, \ldots, m_k^T - 1
$$

(we do not order the exponents), where we have assigned $m_\alpha^T = \text{ht}(\delta)$.

Next consider the restricted arrangement defined by $H_\delta$. This is the arrangement in $H_\delta$ defined by the hyperplanes $H_\alpha \cap H_\delta$ for $\alpha \in \mathcal{I}$ and $\alpha \neq \delta$. We denote this
restricted arrangement by $A^d$. For $\beta \in \Phi^1$ and $\beta \prec \delta$, (10) says that $\delta - b\beta = c\gamma$, where $\gamma \in \Phi_{n-1}$. It follows that either $\gamma$ or $-\gamma$ is in $I^c$ since $\delta \in I^c$. Set $I' = I \cap \Phi_{n-1}$. Then the hyperplane arrangement $A_{I'}$ (defined for $\Phi_{n-1}$) is isomorphic to $A^d$. Indeed, for each $\beta \in \Phi^1$ with $\beta \neq \delta$ we have

$$H_\beta \cap H_\delta = H_\gamma \cap H_\delta$$

for some $\gamma \in I'^c$. Thus the hyperplanes $H_\gamma \cap H_\delta$ for $\gamma \in I'^c$ yield the distinct hyperplanes in $A^d$.

Thus $A^d$ is free and its non-zero exponents are $m_1^I, m_2^I, \ldots, m_k^I$, since these are the exponents of $I'$.

Consequently by the Addition-Deletion Theorem applied to the triple of arrangements $(A_I, A_{I_1}, A^d)$, the arrangement $A_I$ is free and its non-zero exponents are equal to $m_1^I, m_2^I, \ldots, m_k^I$, as desired.

Type $G_2$ is trivial. We consider the case of type $D_n$. Here,

$$\Phi^1 = \{e_1 \pm e_j \mid 2 \leq j \leq n\},$$

using the standard notation for roots in $D_n$. Let

$$\gamma_1 = e_1 + e_n,$$
$$\gamma_2 = e_1 - e_n.$$

The above proof carries over perfectly well as long as $\gamma_1$ and $\gamma_2$ do not both belong to $I^c \cap \Phi^1$, since (13) would hold for $\alpha, \beta \in I^c \cap \Phi^1$.

Suppose that $\gamma_1, \gamma_2 \in I^c$. First, assume that both $\gamma_1$ and $\gamma_2$ are maximal elements of $I^c \cap \Phi^1$. Then $I^c$ consists of the $n$ non-empty sets:

$$\{e_1+i - e_j \mid 2 + i \leq j \leq n\} \cup \{e_1+i + e_j \mid a_i \leq j \leq n-1\} \text{ with } 1 \leq i \leq n-2,$$
$$\{e_1 - e_j \mid 2 \leq j \leq n\},$$
$$\{e_j + e_n \mid 1 \leq j \leq n-1\},$$

where $a_i$ is some natural number satisfying $2 + i \leq a_i \leq n - 1$. The former sets contain one root of each height $1, \ldots, m_i^I$, where $m_i^I$ depends on $a_i$. The latter two sets contain one root of each height $1, \ldots, n-1$, and so the ideal exponents of $I$ can be written as

$$m_1^I, m_2^I, \ldots, m_{n-2}^I, n-1, n-1.$$

Let $I_1 = I \cup \{\gamma_1\}$. By induction $A_{I_1}$ is free and its non-zero exponents are

$$m_1^I, \ldots, m_{n-2}^I, n-1, n-2.$$

Consider the restricted arrangement $A_{I_1}^{\gamma_1}$ defined by $H_{\gamma_1}$. We want to show it is free with non-zero exponents $m_1^I, \ldots, m_{n-2}^I, n-1$.

In order to do this, consider the deleted and restricted arrangements of $A_{I_1}^{\gamma_1}$ defined by $H_{\gamma_2}$. The deleted arrangement $(A_{I_1}^{\gamma_1})'$ is isomorphic to the arrangement defined by $I' = I \cap \Phi_{n-1}$ in $\Phi_{n-1}$ by the same proof as in the other classical cases.
Thus \((A^{\gamma}_1)'\) is free and its non-zero exponents
\[m^I_1, \ldots, m^I_{n-2}, n - 2\]
by inspection of the heights of roots in \([12]\).

On the other hand, the restricted arrangement \((A^{\gamma}_1)''\) defined by \(H_{\gamma_2}\) is more complicated. This arrangement lives in \(H_{\gamma_1} \cap H_{\gamma_2}\), which coincides with the intersection of the null spaces of \(e_1\) and \(e_n\). The hyperplanes defining \((A^{\gamma}_1)''\) are given by the null spaces of
\[
\{e_{1+i} - e_j \mid 2 + i \leq j < n\} \cup \{e_{1+i}\} \cup \{e_{1+i} + e_j \mid a_i \leq j \leq n - 1\},
\]
for \(i = 1, \ldots, n - 2\). This arrangement is precisely an ideal arrangement in \(B_{n-2}\) which is free with non-zero exponents equal to
\[m^I_1, \ldots, m^I_{n-2}.
\]
By the Addition-Deletion Theorem, \(A^{\gamma}_1\) is free with non-zero exponents equal to
\[m^I_1, \ldots, m^I_{n-2}, n - 1,
\]
and using the theorem a second time, it follows that \(A_I\) is free and its non-zero exponents are
\[m^I_1, \ldots, m^I_{n-2}, n - 1, n - 1,
\]
as desired.

Finally, consider the case where
\[\delta = e_1 + e_{2n-1-k}\]
is the maximal element of \(I^c \cap \Phi^i\) for \(k > n - 1\). In this case \(A_{I_1}\) is free with non-zero exponents
\[m^I_1, \ldots, m^I_{n-2}, n - 1, k - 1,
\]
by induction.

It suffices to complete the proof by showing that the restricted arrangement of \(A_{I}\) defined by \(H_{\delta}\) is isomorphic to \(A^{\gamma}_1\) above. Consider the element \(w\) of the Weyl group of \(D_n\) given by exchanging \(e_n\) and \(e_{2n-1-k}\) and fixing all other \(e_i\). It is not hard to check that the hyperplanes defining \(A^{\gamma}_1\) in \(H_{\gamma_1}\) are mapped to the hyperplanes defining this restricted arrangement in \(H_{\delta}\), yielding the isomorphism and completing the proof in type \(D_n\). \(\square\)

We note that a uniform proof in all types for the case \(I = \{\theta\}\) is easy. On the one hand, the full Coxeter arrangement is free with exponents the usual exponents \(m_1 \leq \cdots \leq m_n\). On the other hand, the restricted arrangement for \(H_{\theta}\) is free with exponents \(m_1, \ldots, m_{n-1}\) by [OST]. Thus \(A_I\) is free with the desired exponents.

Remark 11.2. The question of which subarrangements of a Coxeter arrangement are free and which are not has been addressed in [ER] for type \(A_n\) and certain subarrangements in type \(B_n\). In general, it is not true that such a subarrangement is free.
12. Speculation

The two main theorems of this paper are likely to be equivalent by a general principle. Namely, suppose a hyperplane arrangement \( A \) is free with exponents \( m_1, \ldots, m_n \). Suppose further that the arrangement is central, meaning each hyperplane contains the origin.

Let \( C_A \) denote the set of components of the complement \( V - \bigcup_{H \in A} H \). Fix one component \( A \in C_A \). Then for each component \( B \in C_A \) we can define \( l(B) \) to be the least number of hyperplanes needed to be crossed to move from \( B \) to \( A \).

Define a polynomial
\[
P_A(t) = \sum_{B \in C_A} t^{l(B)}.
\]
This is equivalent to the left-hand side of (1) in the case when \( A \) is of ideal type and the component \( A \) is chosen to contain the dominant Weyl chamber.

One might wonder what conditions on \( A \) would ensure that there exists a component \( A \) such that
\[
P_A(t) = \prod_{i=1}^{n} (1 + t + t^2 + \cdots + t^{m_i}).
\]
Supersolvable arrangements are known to possess this property [BEZ] (see also Stanley’s Park City Notes [St]). Our class of ideal hyperplane arrangements are not in general supersolvable.

References


[Ko3] B. Kostant, Flag manifold quantum cohomology, the Toda lattice, and the representation with highest weight \( \rho \), Selecta Math. (N. S.) 2, 1996, 43–91. MR1403352 (97e:17029)


Department of Mathematics and Statistics, University of Massachusetts–Amherst, Amherst, Massachusetts 01003

E-mail address: esommers@math.umass.edu

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109

E-mail address: tymoczko@umich.edu