On the eigenvalue problem for perturbed nonlinear maximal monotone operators in reflexive Banach spaces

Authors:
Athanassios G. Kartsatos and Igor V. Skrypnik

Journal:
Trans. Amer. Math. Soc. **358** (2006), 3851-3881

MSC (2000):
Primary 47H14, 47H07, 47H11

Published electronically:
July 26, 2005

MathSciNet review:
2219002

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a real reflexive Banach space with dual and open and bounded and such that Let be maximal monotone with and and with and A general and more unified eigenvalue theory is developed for the pair of operators Further conditions are given for the existence of a pair such that

The ``implicit" eigenvalue problem, with in place of is also considered. The existence of continuous branches of eigenvectors of infinite length is investigated, and a Fredholm alternative in the spirit of Necas is given for a pair of homogeneous operators No compactness assumptions have been made in most of the results. The degree theories of Browder and Skrypnik are used, as well as the degree theories of the authors involving densely defined perturbations of maximal monotone operators. Applications to nonlinear partial differential equations are included.

**[1]**Viorel Barbu,*Nonlinear semigroups and differential equations in Banach spaces*, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR**0390843****[2]**H. Brezis, M. G. Crandall, and A. Pazy,*Perturbations of nonlinear maximal monotone sets in Banach space*, Comm. Pure Appl. Math.**23**(1970), 123–144. MR**0257805****[3]**Felix E. Browder,*Nonlinear operators and nonlinear equations of evolution in Banach spaces*, Nonlinear functional analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R. I., 1976, pp. 1–308. MR**0405188****[4]**Felix E. Browder,*Fixed point theory and nonlinear problems*, Bull. Amer. Math. Soc. (N.S.)**9**(1983), no. 1, 1–39. MR**699315**, 10.1090/S0273-0979-1983-15153-4**[5]**Felix E. Browder,*The degree of mapping, and its generalizations*, Topological methods in nonlinear functional analysis (Toronto, Ont., 1982), Contemp. Math., vol. 21, Amer. Math. Soc., Providence, RI, 1983, pp. 15–40. MR**729503**, 10.1090/conm/021/729503**[6]**Felix E. Browder,*Degree of mapping for nonlinear mappings of monotone type*, Proc. Nat. Acad. Sci. U.S.A.**80**(1983), no. 6 i., 1771–1773. MR**699437****[7]**Ioana Cioranescu,*Geometry of Banach spaces, duality mappings and nonlinear problems*, Mathematics and its Applications, vol. 62, Kluwer Academic Publishers Group, Dordrecht, 1990. MR**1079061****[8]**Svatopluk Fučík, Jindřich Nečas, Jiří Souček, and Vladimír Souček,*Spectral analysis of nonlinear operators*, Lecture Notes in Mathematics, Vol. 346, Springer-Verlag, Berlin-New York, 1973. MR**0467421****[9]**Zhengyuan Guan and Athanassios G. Kartsatos,*On the eigenvalue problem for perturbations of nonlinear accretive and monotone operators in Banach spaces*, Nonlinear Anal.**27**(1996), no. 2, 125–141. MR**1389473**, 10.1016/0362-546X(95)00016-O**[10]**Z. Guan, A. G. Kartsatos, and I. V. Skrypnik,*Ranges of densely defined generalized pseudomonotone perturbations of maximal monotone operators*, J. Differential Equations**188**(2003), no. 1, 332–351. MR**1954518**, 10.1016/S0022-0396(02)00066-9**[11]**Athanassios G. Kartsatos,*New results in the perturbation theory of maximal monotone and 𝑚-accretive operators in Banach spaces*, Trans. Amer. Math. Soc.**348**(1996), no. 5, 1663–1707. MR**1357397**, 10.1090/S0002-9947-96-01654-6**[12]**Athanassios G. Kartsatos and Igor V. Skrypnik,*Normalized eigenvectors for nonlinear abstract and elliptic operators*, J. Differential Equations**155**(1999), no. 2, 443–475. MR**1698562**, 10.1006/jdeq.1998.3592**[13]**A. G. Kartsatos and I. V. Skrypnik,*Topological degree theories for densely defined mappings involving operators of type (𝑆₊)*, Adv. Differential Equations**4**(1999), no. 3, 413–456. MR**1671257****[14]**A. G. Kartsatos and I. V. Skrypnik,*Invariance of domain for perturbations of maximal monotone operators in Banach spaces*(to appear).**[15]**A. G. Kartsatos and I. V. Skrypnik,*A topological degree theory for densely defined quasibounded**-perturbations of multivalued maximal monotone operators in reflexive Banach spaces*, Abstr. Appl. Anal. (to appear).**[16]**Hong-xu Li and Fa-lun Huang,*On the nonlinear eigenvalue problem for perturbations of monotone and accretive operators in Banach spaces*, Sichuan Daxue Xuebao**37**(2000), no. 3, 303–309 (English, with English and Chinese summaries). MR**1784055****[17]**N. G. Lloyd,*Degree theory*, Cambridge University Press, Cambridge-New York-Melbourne, 1978. Cambridge Tracts in Mathematics, No. 73. MR**0493564****[18]**Dan Pascali and Silviu Sburlan,*Nonlinear mappings of monotone type*, Martinus Nijhoff Publishers, The Hague; Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1978. MR**531036****[19]**Wolodymyr V. Petryshyn,*Approximation-solvability of nonlinear functional and differential equations*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 171, Marcel Dekker, Inc., New York, 1993. MR**1200455****[20]**E. H. Rothe,*Introduction to various aspects of degree theory in Banach spaces*, Mathematical Surveys and Monographs, vol. 23, American Mathematical Society, Providence, RI, 1986. MR**852987****[21]**Stephen Simons,*Minimax and monotonicity*, Lecture Notes in Mathematics, vol. 1693, Springer-Verlag, Berlin, 1998. MR**1723737****[22]**I. V. \cyr{S}krypnik and I. V. Skrypnik,*Nelineinye ellipticheskie uravneniya vysshego poryadka*, Izdat. “Naukova Dumka”, Kiev, 1973 (Russian). MR**0435590****[23]**I. V. Skrypnik,*Methods for analysis of nonlinear elliptic boundary value problems*, Translations of Mathematical Monographs, vol. 139, American Mathematical Society, Providence, RI, 1994. Translated from the 1990 Russian original by Dan D. Pascali. MR**1297765****[24]**Eberhard Zeidler,*Nonlinear functional analysis and its applications. II/B*, Springer-Verlag, New York, 1990. Nonlinear monotone operators; Translated from the German by the author and Leo F. Boron. MR**1033498**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
47H14,
47H07,
47H11

Retrieve articles in all journals with MSC (2000): 47H14, 47H07, 47H11

Additional Information

**Athanassios G. Kartsatos**

Affiliation:
Department of Mathematics, University of South Florida, Tampa, Florida 33620-5700

Email:
hermes@math.usf.edu

**Igor V. Skrypnik**

Affiliation:
Institute for Applied Mathematics and Mechanics, R. Luxemburg Str. 74, Donetsk 340114, Ukraine

Email:
skrypnik@iamm.ac.donetsk.ua

DOI:
http://dx.doi.org/10.1090/S0002-9947-05-03761-X

Keywords:
Maximal monotone operators,
$(S_{+})$-mappings,
Browder's degree,
Skrypnik's degree,
degree for sums of densely defined mappings,
nonlinear eigenvalue problems

Received by editor(s):
May 6, 2003

Received by editor(s) in revised form:
June 3, 2004

Published electronically:
July 26, 2005

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.