manifolds with planar presentations and the width of satellite knots
Authors:
Martin Scharlemann and Jennifer Schultens
Journal:
Trans. Amer. Math. Soc. 358 (2006), 37813805
MSC (2000):
Primary 57M25, 57M27
Published electronically:
May 26, 2005
MathSciNet review:
2218999
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We consider compact manifolds having a submersion to in which each generic point inverse is a planar surface. The standard height function on a submanifold of is a motivating example. To we associate a connectivity graph . For , is a tree if and only if there is a Fox reimbedding of which carries horizontal circles to a complete collection of complementary meridian circles. On the other hand, if the connectivity graph of is a tree, then there is a levelpreserving reimbedding of so that is a connected sum of handlebodies. Corollary. The width of a satellite knot is no less than the width of its pattern knot and so .
 [BZ]
Gerhard
Burde and Heiner
Zieschang, Knots, de Gruyter Studies in Mathematics,
vol. 5, Walter de Gruyter & Co., Berlin, 1985. MR 808776
(87b:57004)
 [Fo]
Ralph
H. Fox, On the imbedding of polyhedra in 3space, Ann. of
Math. (2) 49 (1948), 462–470. MR 0026326
(10,138c)
 [G]
David
Gabai, Foliations and the topology of 3manifolds. III, J.
Differential Geom. 26 (1987), no. 3, 479–536.
MR 910018
(89a:57014b)
 [L]
W.
B. Raymond Lickorish, An introduction to knot theory, Graduate
Texts in Mathematics, vol. 175, SpringerVerlag, New York, 1997. MR 1472978
(98f:57015)
 [Mo]
Kanji
Morimoto, There are knots whose tunnel numbers
go down under connected sum, Proc. Amer. Math.
Soc. 123 (1995), no. 11, 3527–3532. MR 1317043
(96a:57022), http://dx.doi.org/10.1090/S00029939199513170434
 [MS]
Kanji
Morimoto and Jennifer
Schultens, Tunnel numbers of small knots do not
go down under connected sum, Proc. Amer. Math.
Soc. 128 (2000), no. 1, 269–278. MR 1641065
(2000c:57014), http://dx.doi.org/10.1090/S0002993999051606
 [RS]
Yo’av
Rieck and Eric
Sedgwick, Thin position for a connected sum of small knots,
Algebr. Geom. Topol. 2 (2002), 297–309 (electronic).
MR
1917054 (2003d:57021), http://dx.doi.org/10.2140/agt.2002.2.297
 [R]
Dale
Rolfsen, Knots and links, Publish or Perish Inc., Berkeley,
Calif., 1976. Mathematics Lecture Series, No. 7. MR 0515288
(58 #24236)
 [Sc1]
Martin
Scharlemann, Handlebody complements in the
3sphere: a remark on a theorem of Fox, Proc.
Amer. Math. Soc. 115 (1992), no. 4, 1115–1117. MR 1116272
(92j:57004), http://dx.doi.org/10.1090/S0002993919921116272X
 [ScSc]
Martin
Scharlemann and Jennifer
Schultens, Annuli in generalized Heegaard splittings and
degeneration of tunnel number, Math. Ann. 317 (2000),
no. 4, 783–820. MR 1777119
(2001j:57013), http://dx.doi.org/10.1007/PL00004423
 [ST]
M. Scharlemann, A. Thompson, On the additivity of knot width, ArXiv preprint math.GT/0403326.
 [S]
Horst
Schubert, Über eine numerische Knoteninvariante, Math. Z.
61 (1954), 245–288 (German). MR 0072483
(17,292a)
 [Sch]
Jennifer
Schultens, Additivity of bridge numbers of knots, Math. Proc.
Cambridge Philos. Soc. 135 (2003), no. 3,
539–544. MR 2018265
(2004i:57010), http://dx.doi.org/10.1017/S0305004103006832
 [Th]
A. Thompson, personal communication.
 [BZ]
 G. Burde, H. Zieschang, Knots, de Gruyter Studies in Mathematics 5, Walter de Gruyter & G., Berlin, 1985, ISBN: 311008675. MR 0808776 (87b:57004)
 [Fo]
 R. H. Fox, On the imbedding of polyhedra in space, Ann. of Math. 49 (1948), 462470. MR 0026326 (10:138c)
 [G]
 D. Gabai, Foliations and the topology of manifolds. III, J. Differential Geom. 26 (1987), 3, 479536. MR 0910018 (89a:57014b)
 [L]
 W.R.B.R. Lickorish, An introduction to knot theory, Graduate Texts in Mathematics, 175, SpringerVerlag, New York, 1997, ISBN: 038798254X. MR 1472978 (98f:57015)
 [Mo]
 K. Morimoto, There are knots whose tunnel numbers go down under connected sum, Proc. Am. Math. Soc, 123 (1995), no. 11, 35273532. MR 1317043 (96a:57022)
 [MS]
 K. Morimoto, J. Schultens, Tunnel numbers of small knots do not go down under connected sum, Proc. Am. Math. Soc, 128 (2000), no. 1, 269278. MR 1641065 (2000c:57014)
 [RS]
 Y. Rieck, E. Sedgwick, Thin position for a connected sum of small knots, Algebraic and Geometric Topology 2 (2002), 297309.MR 1917054 (2003d:57021)
 [R]
 D. Rolfsen, Knots and Links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976.MR 0515288 (58:24236)
 [Sc1]
 M. Scharlemann, Handlebody complements in the 3sphere: a remark on a theorem of Fox, Proc. Amer. Math. Soc. 115 (1992), 11151117.MR 1116272 (92j:57004)
 [ScSc]
 M. Scharlemann, J. Schultens, Annuli in generalized Heegaard splittings and degeneration of tunnel number, Math. Ann. 317 (2000), no. 4, 783820. MR 1777119 (2001j:57013)
 [ST]
 M. Scharlemann, A. Thompson, On the additivity of knot width, ArXiv preprint math.GT/0403326.
 [S]
 H. Schubert, Über eine numerische Knoteninvariante, Math. Z. 61 (1954), 245288. MR 0072483 (17:292a)
 [Sch]
 J. Schultens, Additivity of bridge numbers of knots, Math. Proc. Cambridge Philos. Soc. 135 (2003), 539544.MR 2018265 (2004i:57010)
 [Th]
 A. Thompson, personal communication.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
57M25,
57M27
Retrieve articles in all journals
with MSC (2000):
57M25,
57M27
Additional Information
Martin Scharlemann
Affiliation:
Department of Mathematics, University of California, Santa Barbara, California 93106
Email:
mgscharl@math.ucsb.edu
Jennifer Schultens
Affiliation:
Department of Mathematics, University of California, Davis, California 95616
Email:
jcs@math.ucdavis.edu
DOI:
http://dx.doi.org/10.1090/S0002994705037670
PII:
S 00029947(05)037670
Received by editor(s):
September 28, 2003
Received by editor(s) in revised form:
May 18, 2004
Published electronically:
May 26, 2005
Additional Notes:
The authors thank RIMS Kyoto, where this work was begun, Professor Tsuyoshi Kobayashi for inviting us to RIMS, Yo’av Rieck for helpful conversations there, and the NSF for partial support via grants DMS 0203680 and DMS 0104039. The second author also thanks the MPIMBonn for support.
Article copyright:
© Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
