Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The monomial ideal of a finite meet-semilattice


Authors: Jürgen Herzog, Takayuki Hibi and Xinxian Zheng
Journal: Trans. Amer. Math. Soc. 358 (2006), 4119-4134
MSC (2000): Primary 13D02, 13H10, 06A12, 06D99
DOI: https://doi.org/10.1090/S0002-9947-06-03842-6
Published electronically: February 20, 2006
MathSciNet review: 2219013
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Squarefree monomial ideals arising from finite meet-semilattices and their free resolutions are studied. For the squarefree monomial ideals corresponding to poset ideals in a distributive lattice, the Alexander dual is computed.


References [Enhancements On Off] (What's this?)

  • 1. D. Bayer and B. Sturmfels, Cellular resolutions of monomial modules, J. Reine Angew. Math. 502 (1998), 123-140. MR 1647559 (99g:13018)
  • 2. W. Bruns and J. Herzog, ``Cohen-Macaulay rings,'' Revised Edition, Cambridge University Press, 1996. MR 1251956 (95h:13020)
  • 3. J. Eagon and V. Reiner, Resolutions of Stanley-Reisner rings and Alexander duality, J. Pure Appl. Algebra 130 (1998), 265-275.MR 1633767 (99h:13017)
  • 4. P. Edelman, Abstract convexity and meet-distributive lattices, in ``Combinatorics and ordered sets'' (Arcata, Calif., 1985), Contemp. Math. 57, 127-150, Amer. Math. Soc., Providence, RI, 1986. MR 0856235 (87m:52003)
  • 5. D. Eisenbud, ``Commutative Algebra with a view to Algebraic geometry'', Springer-Verlag, 1995. MR 1322960 (97a:13001)
  • 6. J. Herzog and T. Hibi, Distributive Lattices, Bipartite Graphs and Alexander Duality, J. Alg. Combin. 22 (2005), 289-303. MR 2181367
  • 7. J. Herzog, T. Hibi and X. Zheng, Dirac's theorem on chordal graphs and Alexander duality, European J. Combin. 25 (2004), 949-960.MR 2083448
  • 8. T. Hibi, Distributive lattices, affine semigroup rings and algebras with straightening laws, in ``Commutative Algebra and Combinatorics'' (M. Nagata and H. Matsumura, Eds.), Advanced Studies in Pure Math., Volume 11, North-Holland, Amsterdam, 1987, pp. 93-109.MR 0951198 (90b:13024)
  • 9. T. Hibi, ``Algebraic Combinatorics on Convex Polytopes,'' Carslaw, Glebe, N.S.W., Australia, 1992.
  • 10. R. P. Stanley, ``Enumerative Combinatorics, Volume I,'' Wadsworth and Brooks/Cole, Monterey, CA, 1986. MR 0847717 (87j:05003)
  • 11. R. P. Stanley, ``Combinatorics and Commutative Algebra,'' Second Edition, Birkhäuser, Boston, MA, 1996. MR 1453579 (98h:05001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13D02, 13H10, 06A12, 06D99

Retrieve articles in all journals with MSC (2000): 13D02, 13H10, 06A12, 06D99


Additional Information

Jürgen Herzog
Affiliation: Fachbereich Mathematik und Informatik, Universität Duisburg-Essen, 45117 Essen, Germany
Email: juergen.herzog@uni-essen.de

Takayuki Hibi
Affiliation: Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan
Email: hibi@math.sci.osaka-u.ac.jp

Xinxian Zheng
Affiliation: Fachbereich Mathematik und Informatik, Universität Duisburg-Essen, 45117 Essen, Germany
Email: xinxian.zheng@uni-essen.de

DOI: https://doi.org/10.1090/S0002-9947-06-03842-6
Received by editor(s): November 6, 2003
Received by editor(s) in revised form: September 2, 2004, and September 9, 2004
Published electronically: February 20, 2006
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society