Calculus on the Sierpinski gasket II: Point singularities, eigenfunctions, and normal derivatives of the heat kernel

Authors:
Nitsan Ben-Gal, Abby Shaw-Krauss, Robert S. Strichartz and Clint Young

Journal:
Trans. Amer. Math. Soc. **358** (2006), 3883-3936

MSC (2000):
Primary 28A80

Published electronically:
April 17, 2006

MathSciNet review:
2219003

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper continues the study of fundamental properties of elementary functions on the Sierpinski gasket (SG) related to the Laplacian defined by Kigami: harmonic functions, multiharmonic functions, and eigenfunctions of the Laplacian. We describe the possible point singularities of such functions, and we use the description at certain periodic points to motivate the definition of local derivatives at these points. We study the global behavior of eigenfunctions on all generic infinite blow-ups of SG, and construct eigenfunctions that decay at infinity in certain directions. We study the asymptotic behavior of normal derivatives of Dirichlet eigenfunctions at boundary points, and give experimental evidence for the behavior of the normal derivatives of the heat kernel at boundary points.

**[ASST]**Bryant Adams, S. Alex Smith, Robert S. Strichartz, and Alexander Teplyaev,*The spectrum of the Laplacian on the pentagasket*, Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, 2003, pp. 1–24. MR**2091699****[AS]**A. Allan and R. Strichartz,*Spectral operators on the Sierpinski gasket*, in preparation.**[A-LS]**C. Avenancio-Leon and R. Strichartz,*Local behavior of harmonic functions on the Sierpinski gasket*, preprint.**[Ba]**Martin T. Barlow,*Diffusions on fractals*, Lectures on probability theory and statistics (Saint-Flour, 1995) Lecture Notes in Math., vol. 1690, Springer, Berlin, 1998, pp. 1–121. MR**1668115**, 10.1007/BFb0092537**[BST]**Oren Ben-Bassat, Robert S. Strichartz, and Alexander Teplyaev,*What is not in the domain of the Laplacian on Sierpinski gasket type fractals*, J. Funct. Anal.**166**(1999), no. 2, 197–217. MR**1707752**, 10.1006/jfan.1999.3431**[DSV]**Kyallee Dalrymple, Robert S. Strichartz, and Jade P. Vinson,*Fractal differential equations on the Sierpinski gasket*, J. Fourier Anal. Appl.**5**(1999), no. 2-3, 203–284. MR**1683211**, 10.1007/BF01261610**[FS]**M. Fukushima and T. Shima,*On a spectral analysis for the Sierpiński gasket*, Potential Anal.**1**(1992), no. 1, 1–35. MR**1245223**, 10.1007/BF00249784**[GRS]**Michael Gibbons, Arjun Raj, and Robert S. Strichartz,*The finite element method on the Sierpinski gasket*, Constr. Approx.**17**(2001), no. 4, 561–588. MR**1845268**, 10.1007/s00365-001-0010-z**[Ki1]**Jun Kigami,*A harmonic calculus on the Sierpiński spaces*, Japan J. Appl. Math.**6**(1989), no. 2, 259–290. MR**1001286**, 10.1007/BF03167882**[Ki2]**Jun Kigami,*Analysis on fractals*, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. MR**1840042****[KL]**Jun Kigami and Michel L. Lapidus,*Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals*, Comm. Math. Phys.**158**(1993), no. 1, 93–125. MR**1243717****[KSS]**Jun Kigami, Daniel R. Sheldon, and Robert S. Strichartz,*Green’s functions on fractals*, Fractals**8**(2000), no. 4, 385–402. MR**1810881**, 10.1142/S0218348X00000421**[NSTY]**Jonathan Needleman, Robert S. Strichartz, Alexander Teplyaev, and Po-Lam Yung,*Calculus on the Sierpinski gasket. I. Polynomials, exponentials and power series*, J. Funct. Anal.**215**(2004), no. 2, 290–340. MR**2150975**, 10.1016/j.jfa.2003.11.011**[OSS]**Richard Oberlin, Brian Street, and Robert S. Strichartz,*Sampling on the Sierpinski gasket*, Experiment. Math.**12**(2003), no. 4, 403–418. MR**2043991****[OSY]**Anders Öberg, Robert S. Strichartz, and Andrew Q. Yingst,*Level sets of harmonic functions on the Sierpiński gasket*, Ark. Mat.**40**(2002), no. 2, 335–362. MR**1948069**, 10.1007/BF02384540**[S1]**Robert S. Strichartz,*Fractals in the large*, Canad. J. Math.**50**(1998), no. 3, 638–657. MR**1629847**, 10.4153/CJM-1998-036-5**[S2]**Robert S. Strichartz,*Analysis on fractals*, Notices Amer. Math. Soc.**46**(1999), no. 10, 1199–1208. MR**1715511****[S3]**Robert S. Strichartz,*Some properties of Laplacians on fractals*, J. Funct. Anal.**164**(1999), no. 2, 181–208. MR**1695571**, 10.1006/jfan.1999.3400**[S4]**Robert S. Strichartz,*Taylor approximations on Sierpinski gasket type fractals*, J. Funct. Anal.**174**(2000), no. 1, 76–127. MR**1761364**, 10.1006/jfan.2000.3580**[S5]**Robert S. Strichartz,*Fractafolds based on the Sierpiński gasket and their spectra*, Trans. Amer. Math. Soc.**355**(2003), no. 10, 4019–4043 (electronic). MR**1990573**, 10.1090/S0002-9947-03-03171-4**[S6]**Robert S. Strichartz,*Analysis on products of fractals*, Trans. Amer. Math. Soc.**357**(2005), no. 2, 571–615 (electronic). MR**2095624**, 10.1090/S0002-9947-04-03685-2**[S7]**R. Strichartz,*Differential equations on fractals: a tutorial*, Princeton University Press, 2006 (to appear).**[SU]**Robert S. Strichartz and Michael Usher,*Splines on fractals*, Math. Proc. Cambridge Philos. Soc.**129**(2000), no. 2, 331–360. MR**1765920**, 10.1017/S0305004100004424**[T1]**Alexander Teplyaev,*Spectral analysis on infinite Sierpiński gaskets*, J. Funct. Anal.**159**(1998), no. 2, 537–567. MR**1658094**, 10.1006/jfan.1998.3297**[T2]**Alexander Teplyaev,*Gradients on fractals*, J. Funct. Anal.**174**(2000), no. 1, 128–154. MR**1761365**, 10.1006/jfan.2000.3581

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
28A80

Retrieve articles in all journals with MSC (2000): 28A80

Additional Information

**Nitsan Ben-Gal**

Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109

Address at time of publication:
Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912

Email:
Nitsan_Ben-Gal@brown.edu

**Abby Shaw-Krauss**

Affiliation:
Department of Mathematics, University of California, Los Angeles, California 90095

Address at time of publication:
Department of Applied Physics & Applied Mathematics, Columbia University, New York, New York 10027

Email:
ams2134@columbia.edu

**Robert S. Strichartz**

Affiliation:
Department of Mathematics, Malott Hall, Cornell University, Ithaca, New York 14853-4201

Email:
str@math.cornell.edu

**Clint Young**

Affiliation:
Department of Mathematics, SUNY Binghamton, Binghamton, New York 13902-6000

Address at time of publication:
Department of Physics, SUNY, Stony Brook, New York 11794

Email:
cyoung@grad.physics.sunysb.edu

DOI:
http://dx.doi.org/10.1090/S0002-9947-06-04056-6

Received by editor(s):
June 8, 2004

Published electronically:
April 17, 2006

Additional Notes:
The first, second and fourth authors’ research was supported by the National Science Foundation through the Research Experiences for Undergraduates (REU) Program at Cornell University.

The third author’s research was supported in part by the National Science Foundation, grant DMS-0140194

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.