Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Functional distribution of $L(s, \chi _d)$ with real characters and denseness of quadratic class numbers
HTML articles powered by AMS MathViewer

by Hidehiko Mishou and Hirofumi Nagoshi PDF
Trans. Amer. Math. Soc. 358 (2006), 4343-4366 Request permission

Abstract:

We investigate the functional distribution of $L$-functions $L(s, \chi _d)$ with real primitive characters $\chi _d$ on the region $1/2 < \operatorname {Re} s <1$ as $d$ varies over fundamental discriminants. Actually we establish the so-called universality theorem for $L(s, \chi _d)$ in the $d$-aspect. From this theorem we can, of course, deduce some results concerning the value distribution and the non-vanishing. As another corollary, it follows that for any fixed $a, b$ with $1/2< a< b<1$ and positive integers $r’, m$, there exist infinitely many $d$ such that for every $r=1, 2, \cdots , r’$ the $r$-th derivative $L^{(r)} (s, \chi _d)$ has at least $m$ zeros on the interval $[a, b]$ in the real axis. We also study the value distribution of $L(s, \chi _d)$ for fixed $s$ with $\operatorname {Re} s =1$ and variable $d$, and obtain the denseness result concerning class numbers of quadratic fields.
References
  • Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 0434929
  • B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981.
  • Bhaskar Bagchi, A joint universality theorem for Dirichlet $L$-functions, Math. Z. 181 (1982), no. 3, 319–334. MR 678888, DOI 10.1007/BF01161980
  • M. B. Barban, The “large sieve” method and its application to number theory, Uspehi Mat. Nauk 21 (1966), no. 1, 51–102 (Russian). MR 0199171
  • H. Bohr, Zur Theorie der Riemannschen Zetafunktion im kritischen Streifen, Acta Math. 40 (1915), 67–100.
  • H. Bohr, R. Courant, Neue Anwendungen der Theorie der Diophantischen Approximationen auf die Riemannsche Zetafunktion, J. Reine Angew. Math. 144 (1914), 249–274.
  • S. Chowla and P. Erdös, A theorem on the distribution of the values of $L$-functions, J. Indian Math. Soc. (N.S.) 15 (1951), 11–18. MR 44566
  • J. B. Conrey and K. Soundararajan, Real zeros of quadratic Dirichlet $L$-functions, Invent. Math. 150 (2002), no. 1, 1–44. MR 1930880, DOI 10.1007/s00222-002-0227-x
  • P. D. T. A. Elliott, On the distribution of the values of quadratic $L$-series in the half-plane $\sigma >{1\over 2}$, Invent. Math. 21 (1973), 319–338. MR 352019, DOI 10.1007/BF01418793
  • S. M. Gonek, Analytic properties of zeta and $L$-functions, Ph. D. Thesis, University of Michigan, 1979.
  • A. Granville and K. Soundararajan, The distribution of values of $L(1,\chi _d)$, Geom. Funct. Anal. 13 (2003), no. 5, 992–1028. MR 2024414, DOI 10.1007/s00039-003-0438-3
  • Edmund Hlawka, Johannes Schoissengeier, and Rudolf Taschner, Geometric and analytic number theory, Universitext, Springer-Verlag, Berlin, 1991. Translated from the 1986 German edition by Charles Thomas. MR 1123023, DOI 10.1007/978-3-642-75306-0
  • Matti Jutila, On character sums and class numbers, J. Number Theory 5 (1973), 203–214. MR 335449, DOI 10.1016/0022-314X(73)90045-0
  • M. Jutila, On the mean value of $L({1\over 2},\,\chi )$ for real characters, Analysis 1 (1981), no. 2, 149–161. MR 632705, DOI 10.1524/anly.1981.1.2.149
  • A. A. Karatsuba and S. M. Voronin, The Riemann zeta-function, De Gruyter Expositions in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 1992. Translated from the Russian by Neal Koblitz. MR 1183467, DOI 10.1515/9783110886146
  • Antanas Laurinčikas, Limit theorems for the Riemann zeta-function, Mathematics and its Applications, vol. 352, Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1376140, DOI 10.1007/978-94-017-2091-5
  • J. E. Littlewood, On the class number of the corpus $P(\sqrt {-k})$, Proc. London Math. Soc. 27 (1928), 358–372.
  • H. Nagoshi, The universality of families of automorphic $L$-functions, submitted.
  • Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
  • E. Stankus, Distribution of Dirichlet $L$-functions with real characters in the half-plane $\textrm {Re}$ $s>1/2$, Litovsk. Mat. Sb. 15 (1975), no. 4, 199–214, 249 (Russian, with Lithuanian and English summaries). MR 0406956
  • E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
  • S. M. Voronin, A theorem on the “universality” of the Riemann zeta-function, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 3, 475–486, 703 (Russian). MR 0472727
Similar Articles
Additional Information
  • Hidehiko Mishou
  • Affiliation: Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
  • Email: m98018a@math.nagoya-u.ac.jp
  • Hirofumi Nagoshi
  • Affiliation: Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan
  • Email: nagoshih@ybb.ne.jp
  • Received by editor(s): January 3, 2004
  • Received by editor(s) in revised form: August 9, 2004
  • Published electronically: May 17, 2006
  • Additional Notes: Both authors were supported by the JSPS Research Fellowships for Young Scientists.
  • © Copyright 2006 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Trans. Amer. Math. Soc. 358 (2006), 4343-4366
  • MSC (2000): Primary 11M06, 41A30; Secondary 11M20, 11R29
  • DOI: https://doi.org/10.1090/S0002-9947-06-03825-6
  • MathSciNet review: 2231380