THE 3-MANIFOLD RECOGNITION PROBLEM

ROBERT J. DAVERMAN AND THOMAS L. THICKSTUN

Abstract. We introduce a natural Relative Simplicial Approximation Property for maps from a 2-cell to a generalized 3-manifold and prove that, modulo the Poincaré Conjecture, 3-manifolds are precisely the generalized 3-manifolds satisfying this approximation property. The central technical result establishes that every generalized 3-manifold with this Relative Simplicial Approximation Property is the cell-like image of some generalized 3-manifold having just a 0-dimensional set of nonmanifold singularities.

1. Introduction

The manifold recognition problem, originally proposed in 1978 by J. W. Cannon [9], asks for a short list of simple topological properties, easy to check, that characterize topological manifolds among topological spaces. Cannon conjectured that n-manifolds might be characterized as those generalized n-manifolds satisfying a minimal amount of general position. To address the latter in dimensions greater than 4 he proposed the following Disjoint Disks Property: any two maps of \(B^2 \) into the space can be approximated by maps with disjoint images.

This paper addresses the 3-manifold recognition problem. For that dimension the fundamental difficulty is to identify an appropriate general position property. The Disjoint Disks Property, possessed by no 3-manifold, is impossibly strong, and the related Disjoint Arcs Property, possessed by all generalized 3-manifolds, is impossibly weak.

A generalized \(n \)-manifold \(X \), abbreviated as \(n\text{-gm} \), is a locally compact, locally contractible, finite dimensional metric space with the relative local homology of \(\mathbb{R}^n \) (i.e., \(H_*(X, X - \{x\}; \mathbb{Z}) \) is isomorphic to \(H_*(\mathbb{R}^n, \mathbb{R}^n - \{0\}; \mathbb{Z}) \) for all \(x \in X \)). In such a space \(X \) the manifold set, \(M(X) \), consists of all points of \(X \) having a neighborhood homeomorphic to \(\mathbb{R}^n \), and the singular set, or nonmanifold set, \(S(X) \), is defined as \(S(X) = X - M(X) \). As components of locally compact metric spaces are separable, we simply will view all \(n\text{-gms} \) as separable metric spaces.

Clearly every \(n \)-manifold is an \(n\text{-gm} \), but the converse fails for \(n > 2 \). If \(f: M \to X \) is a proper, cell-like, surjective mapping defined on an \(n \)-manifold, where \(\dim X < \infty \), then \(X \) is an \(n \)-gm, and classical examples like the famous dog-bone space of R. H. Bing [3] demonstrate that \(X \) need not be a genuine manifold. Historically cell-like maps like Bing’s have been used to produce a large class of
examples. To distinguish such images from other possible examples that arise, one calls an n-gm X resolvable if there exist a genuine n-manifold M and a proper, cell-like, surjective mapping $f: M \to X$. In this case, the pair (M, f) is called a resolution of X. Bryant, Ferry, Mio and Weinberger have established the existence of nonresolvable n-gms for $n > 5$ [7].

In dimensions greater than 4 the model theorem is provided by the combination of results by Edwards and Quinn. Given a connected n-gm X, Quinn [19] produced an integer valued obstruction, $i(X)$, which is locally defined, locally constant, and satisfies $i(X \times X') = i(X) \times i(X')$, where $i(X) = 1$ if and only if X is resolvable $(n > 3)$. Edwards [13] (see [11] for details) showed that a resolvable n-gm, $n > 4$, is an n-manifold if and only if it satisfies the Disjoint Disks Property. Consequently, for $n > 4$ a connected space X is an n-manifold if and only if X is an n-gm satisfying both the Disjoint Disks Property and $i(X) = 1$.

Daverman and Repovš [12] introduced a kind of general position property—called the spherical simplicial approximation property, abbreviated as SSAP, and defined in Section 4—and showed that every resolvable generalized 3-manifold with the SSAP is a 3-manifold. Here we modify their property, defining a relative simplicial approximation property (RSAP) which is stronger than this SSAP; our main result establishes that, modulo the Poincaré Conjecture, every generalized 3-manifold X satisfying this RSAP is a 3-manifold. Specifically, the fundamental issue is to confirm that X is resolvable, for then [12] applies to give the final 3-manifold recognition step. With no extra hypotheses we produce a cell-like, surjective mapping $\Phi: Y \to X$, where Y is a 3-gm such that $S(Y)$ is 0-dimensional. If the Poincaré Conjecture is true, however, then the Corollary to the Resolution Theorem of [22] (see [23] for corrections) assures that Y has a resolution $\Psi: M \to Y$, and $\Phi \Psi: M \to X$ serves as the desired resolution of X.

2. Preliminaries

A subset C of a space X is locally k-cocentered, abbreviated as k-LCC, if each neighborhood U of an arbitrary point $x \in X$ contains another neighborhood V of x such that every map $\partial I^{k+1} \to V - C$ can be extended to a map $I^{k+1} \to U - C$.

We shall distinguish simplicial complexes from their underlying point sets, called polyhedra. A triangulation of a polyhedron Q is a pair (T, h), where T denotes a simplicial complex and h a homeomorphism of its underlying point set, denoted by $|T|$, onto Q. Frequently the polyhedra encountered here will be subsets of a given 3-gm. One should not presume the existence of any compatibility between the (piecewise) linear structure of the simplicial complex associated to a polyhedron Q in a 3-gm X and the possible linear structures arising within X. Most of our attention will fall on 2-dimensional polyhedra, called 2-polyhedra for short.

A subpolyhedron Q' of a polyhedron Q is a closed subset of Q such that there exist a triangulation (T, h) of Q and a subcomplex T' of T with $h(|T'|) = Q'$.

Suppose Q is a polyhedron and $z \in Q$. Impose a triangulation (T, h) on Q. Suppress h, here and throughout the remainder of this paper, and regard T as a simplicial complex whose underlying point set equals Q. Subdivide T, if necessary, so that z corresponds to a vertex of T. For such a Q topologically embedded as a closed subset of a generalized 3-manifold X, $X - Q$ is said to have free local fundamental group at $z \in Q$, abbreviated as 1-FLG at z, if for each sufficiently small neighborhood U of z there exists another neighborhood V of z with $z \in V \subset U$.
and if \(W \) is any connected open set with \(z \in W \subset V \), then for each nonempty component \(W' \) of \(W - Q \) the (inclusion-induced) image \(\pi_1(W') \to \pi_1(U') \) is a free group on \(m - 1 \) generators, where \(U' \) denotes the component of \(U - Q \) containing \(W' \) and \(m \) is the number of “components” of \(\text{St}(z) - z \) whose images meet \(C(\text{St}(W')) \), where \(\text{St}(z) \) denotes the simplicial star of \(z \) in the complex \(T \). As usual, \(X - Q \) is simply said to be 1-FLG in \(X \) if it is 1-FLG in \(X \) at each point of \(Q \).

For simplicity, we will say that a polyhedron \(Q \) embedded in a generalized 3-manifold \(X \) as a closed subset is tamely embedded in \(X \) if \(X - Q \) is 1-FLG in \(X \). Nicholson [18] has shown that a polyhedron tamely embedded in a genuine 3-manifold \(M \) in this 1-FLG sense is tamely embedded in the geometric sense, where there exists a self-homeomorphism (arbitrarily close to identity) \(M \to M \) of \(M \) that carries \(Q \) onto a subspace underlying a subcomplex of some preassigned triangulation of \(M \), after subdivision.

Given maps \(\phi : Y \to X \) and \(f : Z \to X \), where \(X \) is metrizable, and given \(A \subset Y \), we say that \(f \) approximately lifts to \(A \) (occasionally, for emphasis, under \(\phi \)) if for each metric on \(X \) and each \(\epsilon > 0 \) there exists a map \(\tilde{f} : Z \to A \) such that \(\phi \tilde{f} \) is within \(\epsilon \) (pointwise) of \(f \).

Suppose \(X \) is a connected 3-gm, \(D \) and \(E \) are disjoint, closed subspaces of \(X \), and \(\mu : R \to X - (D \cup E) \) is a map defined on a compact, 2-polyhedron \(R \). We say that \(\mu \) homologically separates \(D \) from \(E \) if there exist \(\alpha \in H_2(R; \mathbb{Z}_2) \) and \(\xi \in H_3(X - E, X - (D \cup E); \mathbb{Z}_2) \) such that, for each \(d \in D \), \(\mu_*(\alpha) = i_*\partial(\xi) \neq 0 \), where \(i \) denotes the inclusion \(X - (D \cup E) \to X - (\{d\} \cup E) \). We say that \(\mu \) strongly separates \(D \) and \(E \) if no component of \(X - \mu(R) \) contains points of both \(D \) and \(E \).

A compact subset \(C \) of any ANR \(Y \) is cell-like if, for each open subset \(U \) of \(Y \) containing \(C \), the inclusion \(C \to U \) is homotopic to a constant. A proper map \(f : Y \to Z \) defined on an ANR \(Y \) is a cell-like map if each \(f^{-1}(z) \), \(z \in Z \), is cell-like. We say that a cell-like map \(f : Y \to Z \) is conservative over \(B \subset Z \) if \(f|f^{-1}(B) \) is 1-1.

Similarly, a compact subset \(C \) of an \(n \)-manifold \(M \) is cellular if \(M \) contains a sequence \(\{D_i\}_{i=1}^\infty \) of \(n \)-cells such that \(\text{Int}(D_i) \supset D_{i+1} \) and \(\bigcap_{i=1}^\infty D_i = C \), and a proper map \(F : M \to Z \) defined on \(M \) is cellular if each \(F^{-1}(z) \) is.

As in [22] a 3-near manifold \(M^* \) is a 3-gm obtained from a 3-manifold \(M \) by identifying a null sequence of pairwise disjoint 3-cells in \(M \) and replacing the interior of each with the interior of a compact, contractible 3-manifold in such a way that \(S(M^*) \) is 0-dimensional and 1-LCC embedded in \(M^* \). A near resolution of a 3-gm \(X \) is a pair \((M^*, \psi) \), where \(M^* \) is a 3-near manifold and \(\psi : M^* \to X \) is a proper, cell-like surjection. Should the Poincaré Conjecture be false, one could easily produce a 3-near manifold \(M^* \) which is nonresolvable, homotopy equivalent to \(S^3 \), has \(S(M^*) = \text{point} \), and satisfies \(M^* \times \mathbb{R} \cong S^3 \times \mathbb{R} \).

3. Elementary properties of 3-gms and 3-near manifolds

A generalized 3-manifold with boundary \(Z \) is a locally compact, locally contractible, finite dimensional metric space such that, for each \(z \in Z \), either \(H_*(Z, Z - \{z\}; \mathbb{Z}) \cong 0 \) or \(H_*(Z, Z - \{z\}; \mathbb{Z}) \cong H_*(\mathbb{R}^3, \mathbb{R}^3 - \{0\}; \mathbb{Z}) \); the subset consisting of all \(z \in Z \) for which \(H_*(Z, Z - \{z\}; \mathbb{Z}) \cong 0 \) is called the boundary of \(Z \), denoted \(\partial Z \).

Lemma 3.1. If the space \(Z \) is expressed as a union of closed subsets \(Z_1 \) and \(Z_2 \) of \(Z \) which are generalized 3-manifolds with boundary, where \(Z_1 \cap Z_2 = \partial Z_1 = \partial Z_2 \),
then Z is a generalized 3-manifold. Conversely, if Z is a 3-gm and $Z = Z_1 \cup Z_2$, where Z_1, Z_2 are closed subsets of Z and $Z_0 = Z_1 \cap Z_2$ is a 2-gm, then Z_1 and Z_2 are generalized 3-manifolds with boundary.

Proof. For the most part—except for ANR properties—this is treated in [20]. When Z_1 and Z_2 are 3-gms with boundary, work of Mitchell [16] combines with classical results of Wilder [24] to establish that $\partial Z_i (i = 0, 1)$ is a 2-manifold, hence an ANR, and standard results from ANR theory then yield that $Z = Z_1 \cup Z_2$ is an ANR. Similarly, in the converse, Z_0 is an ANR, so Z_1 and Z_2 must be ANRs as well.

Lemma 3.2. Let $\{X_i, p_{i+1,i}\}$ denote a sequence of 3-gms and cell-like maps, with inverse limit Z. Then Z is a 3-gm, and the associated projections $q_i : Z \to X_i$ are cell-like maps.

Proof. We provide an argument only for the case in which each X_i is a manifold factor, i.e., $X_i \times \mathbb{R}^k$ is a manifold (one can take k to be any fixed integer greater than 1). It parallels the proof of [17] 3.9(iii)] about the inverse limit of a sequence of ANRs and cell-like maps yielding an ANR. Only this special case matters for our purposes here, because the RSAP implies X contains 2-cells, so $X \times \mathbb{R}^k$ contains codimension one cells, and thus the Quinn obstruction [19] to the existence of a resolution vanishes.

Examine the related sequence $\{X_i \times \mathbb{R}^k, p_{i+1,i} \times \text{Id}\}$ of cell-like maps between manifolds. By [13] or [21] each map $p_{i+1,i} \times \text{Id}$ is a near-homeomorphism, so a result of M. Brown [6] (or see [1]) assures that the induced limiting map $q_i \times \text{Id}: Z \times \mathbb{R}^k \to X_1 \times \mathbb{R}^k$ is a near-homeomorphism. Hence, $Z \times \mathbb{R}^k$ is a $(3+k)$-manifold, and Z, being one of its codimension k factors, must be a 3-gm. Furthermore, $q_1 \times \text{Id}$, being a near-homeomorphism, is a cell-like mapping [11] Theorem 17.4]; obviously this means q_1 itself is cell-like. \square

The next lemma uses the notation of Lemma 3.2, as well as the standard notation for the composite, $p_{2,1} \cdots p_{k-1,k} p_{k+1,k} = p_{k+1,1}$. The map q_1 is the inverse limit projection described in Lemma 3.2.

Lemma 3.3. Let $\{X_i, p_{i+1,i}\}$ denote a sequence of 3-gms and cell-like maps such that $p_{k+1,k}$ restricts to a cellular map $p_{k+1,1}(M(X_1)) \to p_{k,1}(M(X_1))$ for each $k > 0$. Then $q_1^{-1}(M(X_1))$ is a 3-manifold.

Proof. Each of the restricted $p_{k+1,k}$ is a near-homeomorphism by Armentrout’s Cellular Approximation Theorem [2], so Brown’s argument [6] applies, just as in 3.2 \square

Throughout the remainder of this section \mathbb{Z}_2 coefficients will be used for all homology and cohomology computations.

Lemma 3.4. Suppose E is a nonempty, closed subset of the 3-gm X and $d \in X - E$. Then there exist a compact, connected neighborhood D of d, a compact 2-polyhedron R, and a map $\nu : R \to X$ such that ν homologically separates D from E.

Proof. Note that whenever X has no compact component,

$$\partial : H_3(X, X - \{x\}) \to H_2(X - \{x\})$$

is 1-1. This follows immediately, because, by duality [5], $H_3(X) \cong H_0^0(X) \cong 0$. Fix $0 \neq \xi \in H_3(X - E, X - (E \cup \{d\}))$, and assume X is connected (so $X - E$
Suppose Lemma 3.5.

Let $\xi:X \to \nu$ be a map of a compact 2-polyhedron R which homologically separates D from E. Then ν strongly separates D and E.

Proof. If $\nu(R)$ failed to separate $d_0 \in D$ and $e_0 \in E$, then there would be an arc $\gamma \subset X - \nu(R)$ connecting d_0 and e_0. By hypothesis there exist $\alpha \in H_2(R)$ and $\xi(\neq 0) \in H_3(X - E, X - (E \cup D))$ such that $\nu_*(\alpha) = i_* \partial(\xi)(\neq 0) \in H_2(X - (E \cup \{d_0\}))$. Let γ denote the component of $\gamma - E$ containing d_0. Certainly here η_* would factor through $H_3(X - E, X - (E \cup \{d_0\})) \cong H_0^0(\gamma) \cong H_0^0([0, 1/2]) \cong 0$, a contradiction.

Lemma 3.6. Let C be a closed subset of a 3-manifold M, the frontier of which is a surface S. Then attachment of an open collar $S \times [0, 1)$ to C along $S = S \times 0$ yields a 3-manifold.

Proof. When M is a 3-sphere and S is a 2-sphere this was proved by Hosay and Lininger [14] (or see [10], [8]). The general case, which localizes to that of a 2-sphere in S^3 [2], Theorem 5, follows.

4. A RELATIVE SIMPLICIAL APPROXIMATION PROPERTY

According to [12], a generalized 3-manifold X has the Simplicial Approximation Property (SAP) if for each map $f: I^2 \to X$ and each $\epsilon > 0$, there exist a map $F: I^2 \to X$ and a compact 2-polyhedron $K_F \subset X$ such that (1) dist($F, f) < \epsilon$, (2) $F(I^2) \subset K_F$, and (3) $X - F(I^2)$ is 1-FLG in X. Similarly, X has the Spherical Simplicial Approximation Property (SSAP) if the analogous conditions hold for maps $S^2 \to X$ in place of maps $I^2 \to X$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
We will say that a map \(f: K \to X \) of a compact 2-dimensional polyhedron \(K \) to a generalized 3-manifold \(X \) is simplicial if \(f(K) \) is a polyhedron whose complement is 1-FLG in \(X \) and \(f: K \to f(K) \) is simplicial with respect to some triangulations of \(K \) and \(f(K) \). Of course, given any map between polyhedra, we can impose triangulations, take fine mesh subdivisions, and then approximate by a simplicial map. In short, the map \(F \) in the SAP (similarly, in the SSAP) can be assumed to be simplicial and onto \(K_F \).

A generalized 3-manifold \(X \) has the Relative Simplicial Approximation Property (RSAP) if for each map \(f: I^2 \to X \), each compact subpolyhedron \(Q \) of \(I^2 \) for which \(f|Q \) is simplicial as above, and each \(\epsilon > 0 \), there exists a simplicial map \(F: I^2 \to X \) such that \(\text{dist}(F, f) < \epsilon \) and \(F|Q = f|Q \).

Lemma 4.1. Every 3-gm \(X \) that satisfies the RSAP also satisfies the following stronger property: for each compact 2-polyhedron \(K \), compact subpolyhedron \(L \), map \(g: K \to X \) such that \(g|L \) is simplicial, and \(\epsilon > 0 \), there exists a simplicial map \(G: K \to X \) with \(\text{dist}(G, g) < \epsilon \) and \(G|L = g|L \).

Proof. Assume for simplicity that \(X \) is path connected. List the large simplexes \(\Delta_1, \ldots, \Delta_r \) of \(L \)—large in the sense of being proper faces of no other simplexes of \(L \)—and choose any simplex \(\Delta_{r+1} \) of \(K - L \). We show how to approximate \(g \) by a new map \(g_{r+1}: K \to X \) which is simplicial on a complex underlying \(L \cup \Delta_{r+1} \).

Specify a finite collection \(\sigma_1, \ldots, \sigma_r, \sigma_{r+1} \) of pairwise disjoint simplexes in \(\text{Int}(I^2) \) and equip them with simplicial isomorphisms \(e_j: \sigma_j \to \Delta_j \) \((j = 1, \ldots, r+1)\). Define \(\eta = \bigcup e_j: \bigcup \Delta_j \to K \). Think of \(e_{r+1}^{-1}(\Delta_{r+1} \cap L) \) together with all the other \(\sigma_j \) \((j = 1, \ldots, r)\) as \(Q \subset I^2 \). Use the hypothesized path connectedness of \(X \) to extend \(g\eta|Q \) to a map \(f: I^2 \to X \). Apply the RSAP to approximate \(f: I^2 \to X \) by a simplicial map \(F: I^2 \to X \) that agrees with \(g\eta|Q \), and define \(G_{r+1}: Q \cup \Delta_{r+1} \to X \) as \(G_{r+1} = F\eta^{-1} \). Note that \(G_{r+1} \) is a well-defined simplicial map approximating \(g|L \cup \Delta_{r+1} \) and coinciding with \(g \) on \(L \). By a controlled homotopy extension lemma, \(G_{r+1} \) extends to a map \(g_{r+1}: K \to X \) approximating \(g \) and coinciding with \(g \) on \(L \).

A finite number of repetitions of this procedure yields the desired simplicial map \(G: K \to X \).

Corollary 4.2. Every generalized 3-manifold \(X \) satisfying the RSAP also satisfies the SSAP.

Corollary 4.3. All resolvable generalized 3-manifolds satisfying the RSAP are genuine 3-manifolds.

See Recognition Theorem 3.1 of [12].

Corollary 4.4. Suppose \(X \) is a 3-gm satisfying the RSAP, \(L \subset X \) is a tamely embedded 2-polyhedron, and \(\nu: R \to X \) is a map defined on a compact 2-polyhedron. Then for each \(\epsilon > 0 \) there exists a simplicial map \(\mu: R \to X \) with \(\text{dist}(\mu, \nu) < \epsilon \) and \(L \cup \mu(R) \) is a polyhedron tamely embedded in \(X \).

We say that a 2-polyhedron \(P \) is preferred if it contains neither isolated points nor local cut points—equivalently, if in some (hence, each) triangulation of \(P \) the link of every vertex is nonempty and connected. More is said about the role of preferred 2-polyhedra in Section 5. For brevity we call a pair \((K, P)\) of compact, 2-polyhedra in a 3-gm \(X \) a tame-preferred polyhedral pair if \(K \) is tame, \(P \) is preferred and \(P \) is a subpolyhedron of \(K \). Note that if \((K, P)\) is tame-preferred in \(X \), \(P \) is not tame—at least, not \textit{a priori} tame—in \(X \).
Lemma 4.5. Suppose X is a 3-gm satisfying the RSAP and $f : I^2 \to X$ is a map such that f restricts to a simplicial map on ∂I^2 with $f|\partial I^2 - I \times 1$ 1-1 and $f(I \times 0) \cap f(I \times 1) = \emptyset$. Then there exists a tame-preferred polyhedral pair (K, P) such that $K \supset P \supset f(I \times 0)$. Furthermore, if $f(\partial I^2 - I \times 1)$ is a subpolyhedron of a compact, tame polyhedron Q, then (K, P) can be obtained so $P \cup Q$ is a subpolyhedron of K.

Proof. Apply RSAP to obtain an approximation $F : I^2 \to X$ to f, with $F|\partial I^2 - I \times 1 = f|\partial I^2 - I \times 1$, and where $F : I^2 \to F(I^2)$ can be regarded as simplicial (also, if need be, where $F(I^2) \cup Q$ is a tame 2-polyhedron). Choose triangulations T of I^2 and T' of $F(I^2)$ for which F is simplicial.

Fix a 1-simplex τ of T', $\tau \subset f(I \times 0)$. We show that some 2-simplex $\sigma \in T'$ contains τ. To see why, consider the unique 2-simplex $\gamma \in T$ containing $f^{-1}(\tau)$. Set $\sigma = F(\gamma)$ if $F(\gamma) \neq \tau$. Otherwise, produce a maximal chain $\gamma = \gamma_0, \gamma_1, \ldots, \gamma_\ell$ of 2-simplices in T such that $\gamma_{j-1} \cap \gamma_j \subset \partial \gamma_j \subset F^{-1}(\tau)$. Since $\partial \gamma_j - \gamma_j = \emptyset \supset \partial I^2$, some other 2-simplex ξ must meet γ_j in an edge $e = f^{-1}(\tau)$, and $F(\xi) \in T'$ will be a 2-simplex containing τ.

Let v be a vertex of $f(I \times 0)$ and w, w' the two possible points in the link of v there. Essentially the same argument shows that w, w' belong to a single component of the link of v in $F(I^2)$.

Although $F(I^2)$ itself might not be preferred, we claim that it contains a preferred polyhedron $P \supset f(I \times 0)$. Let P' be $F(I^2)$ after deletion of (the interiors of) all those 1-simplexes e of T' which are edges of no 2-simplex from T'. Clearly then $F(I^2) \supset P' \supset f(I \times 0)$. If the vertex $w \in T'$ has disconnected link in P' and $w \notin f(I \times 0)$, delete a small regular neighborhood of w from P'; if, however, $w \in f(I \times 0)$, then delete that small neighborhood $N(w)$ but reinsert the closure of the unique component of $N(w) - \{w\}$ containing the intersection of $N(w)$ with $\text{Link}(w, f(I \times 0))$. Repetition of these two operations eliminates or repairs all disconnected links and yields a preferred polyhedron $P \subset P'$ such that P and $P \cup Q$ are subpolyhedra of $K = F(I^2) \cup Q$. \hfill \Box

Lemma 4.6. Suppose X is a 3-gm satisfying the RSAP and $L \subset X$ is a compact 2-polyhedron tamely embedded in X such that each vertex of L belongs to at least two edges. Then there exists a tame-preferred polyhedral pair (K, P) in X such that L is a subpolyhedron of P.

Proof. Since components of L can be treated one after another, we will simply assume L is connected.

Assume τ is a 1-simplex of L which belongs to no 2-simplex. In view of the hypothesis here, there is an embedding $f : \partial I^2 - I \times 1 \to L$ with $f(I \times 0) = \tau$. Since no arc locally separates a 3-gm, obviously f can be extended to a map $f : I^2 \to X$ with $f(I \times 0) \cap f(I \times 1) = \emptyset$, and then Lemma 4.5 assures that L can be expanded by attaching a preferred polyhedron that contains τ. Repeating as often as necessary, we can simply assume each 1-simplex of L is a face of some 2-simplex.

Now assume $v \in L$ is a vertex that has disconnected link in the expanded L'. One can build an embedding $f : \partial I^2 - I \times 1 \to L'$ with $v \in f(I \times 0)$, extend f to all of ∂I^2, as before, and apply Lemma 4.5 to reduce the number of components of $\text{Link}(v, L')$ in the expanded L. This expansion can be localized to affect none of the other vertices of L. One can eliminate any 1-simplex contained in no 2-simplex from the expansion and snip at new vertices to prevent disconnected links, just as in
the proof of [15]. Finitely many repetitions yields a preferred polyhedron containing all of \(L \).

Let \(L \) denote a 2-polyhedron. Call \(v \in L \) a negligible vertex if there exists a homeomorphism \(\theta \) from \([0, 1]\) onto a neighborhood of \(v \) such that \(\theta(0) = v \). Note that no point of a preferred 2-polyhedron is a negligible vertex.

Essentially the same argument as in [16] proves the following.

Lemma 4.7. Suppose \(X \) is a 3-gm satisfying the RSAP and \(L \subset X \) is a compact 2-polyhedron tamely embedded in \(X \). Let \(L^* \) be a compact, polyhedral subset of \(L \) obtained by deleting a small connected neighborhood about each negligible vertex of \(L \). Then there exists a tame-preferred polyhedral pair \((K, P)\) in \(X \) with \(L^* \) a subpolyhedron of \(P \).

Theorem 4.8. Suppose \(X \) is a 3-gm satisfying the RSAP, \(D \) and \(E \) are disjoint closed subsets of \(X \), \(\nu : R \to X \) is a map defined on a compact 2-polyhedron \(R \) such that \(\nu \) homologically separates \(D \) and \(E \), and \(P \) is a preferred 2-polyhedron tamely embedded in \(X \). Then there exists a map \(\mu^* : R \to X \) such that \(\mu^* \) homologically separates \(D \) and \(E \) and there exists a tame-preferred polyhedral pair \((K^*, P^*)\) in \(X \) such that \(P^* \supset P \cup \mu^*(R) \).

Proof. First apply Corollary 4.4 to approximate \(\nu \) by a simplicial map \(\mu : R \to X \) so close to \(\nu \) that \(\mu \) homologically separates \(D \) and \(E \) and, in addition, \(P \cup \mu(R) \) is a 2-polyhedron. Then use Lemma 4.7 with \(L = P \cup \mu(R) \) to obtain a tame-preferred polyhedral pair \((K^*, P^*)\) in \(X \), with \(P^* \supset L^* \). Note that any negligible vertex of \(P \cup \mu(R) \) must lie in \(\mu(R) - P \), so \(P^* \supset P \). By construction the map \(\mu \), considered as a map to \(\mu(R) \subset L \), is homotopic in \(\mu(R) \) to a map \(\mu^* \) into \(L^* \). Hence, \(D \) and \(E \) are homologically separated by \(\mu^* \), and \(P \cup \mu^*(R) \subset L^* \subset P^* \).

5. The main result

The aim of this section is to establish the following Near-Resolution Theorem. It immediately yields the promised characterization of 3-manifolds as the generalized 3-manifolds satisfying the RSAP, provided the Poincaré Conjecture holds.

Theorem 5.1 (Near-Resolution). Every generalized 3-manifold \(X \) satisfying the RSAP has a \(3 \)-near resolution \((M, \psi)\).

Corollary 5.2. Suppose the Poincaré Conjecture is true. Then a generalized 3-manifold \(X \) is a genuine 3-manifold if and only if it satisfies the RSAP.

Proof. When \(X \) satisfies the RSAP, Theorem 5.1 certifies the existence of a cell-like, surjective map \(\psi : M \to X \) defined on a \(3 \)-near manifold \(M \). Under the assumption that the Poincaré Conjecture is true, \(M \) actually is a 3-manifold; in other words, the promised cell-like mapping \(\psi \) itself provides a resolution of \(X \). Corollary 4.3 confirms that \(X \) is a 3-manifold.

The forward implication is trivial. \(\square \)

Lemma 5.3 (Inflation). Suppose \(X \) is a 3-gm and \(P \subset X \) is a preferred 2-polyhedron. Then there exist a 3-gm \(Y \) and a proper, surjective, cell-like map \(\phi : Y \to X \) satisfying the following conditions:

1. \(\phi \) is conservative over \(X - P \);
2. there is a preferred 2-polyhedron \(\tilde{P} \subset M(\phi^{-1}(P)) \) for which \(\phi : \tilde{P} \to P \) is cell-like;
(3) for each (respectively, preferred) 2-polyhedron \(J \subseteq P \), there is a (respectively, preferred) 2-polyhedron \(J^* \subseteq \phi^{-1}(J) \), for which \(\phi^* : J^* \rightarrow J \) is cell-like;
(4) for each \(x \in X \), \(\phi^{-1}(x) \cap S(Y) \) is finite; and
(5) \(\phi^{-1}(M(X)) \subseteq M(Y) \) and \(\phi : \phi^{-1}(M(X)) \rightarrow M(X) \) is cellular.

Proof. We start by describing a model situation in which \(P \) is a compact, connected 2-manifold separating \(X \) into two components, \(X_+ \) and \(X_- \). Here \(FrX_+ = P = FrX_- \). Let \(Y \) be the space resulting from the disjoint union of \(ClX_- \), \(P \times [-1,1] \) and \(ClX_+ \) after identifying each \(x \in FrX_- \) with \(x \times -1 \in P \times [-1,1] \) and each \(x \in FrX_+ \) with \(x \times 1 \in P \times [-1,1] \). Define \(\phi : Y \rightarrow X \) as the obvious map induced by inclusions on the images of \(ClX_- \), \(ClX_+ \), extended to send all of \(z \times [-1,1], z \in P \), to \(z \in P \subseteq X \). Lemma 3.1 assures that \(Y \) is a generalized 3-manifold. One can check quite easily that \(\phi : Y \rightarrow X \) has all the right features. In particular, the (preferred) 2-polyhedron \(\tilde{P} \) called for in (2) can be spelled out as \(\tilde{P} = P \times \{0\} \cup P \times [-1,1] \), and the polyhedron \(J^* \) called for in (3) can be defined as

\[
J^* = \tilde{P} \cup \phi^{-1}(J - P) \cup [P \cap Cl(J - P)] \times [-1,1].
\]

Conclusion (4) is obvious. Conclusion (5) is assured by Lemma 3.6. Finally, since each point preimage is a cell, cellularity of \(\phi \) over \(M(X) \) is guaranteed here, as well as in subsequent steps, by [15, Cor. 1.4] and [11, Prop. 18.4].

Imposing a triangulation \(T \) on \(P \). Locally the same procedure as in the model case works at interiors of all 2-simplexes \(\sigma \in T \) and leads to a cell-like map \(\phi_2 : Y_2 \rightarrow X \) defined on a 3-gm \(Y_2 \). When replacing \(Int(\sigma) \) by \(Int(\sigma) \times [-1,1] \), \(\sigma \) a 2-simplex of \(T \), the topology of \(Y_2 \) must be regulated so that given any sequence \(\{p_n\} \) in \(Int(\sigma) \) converging to \(p_0 \in \partial \sigma \), then \(p_n \times [-1,1] \rightarrow p_0 \).

The next step is to inflate the 1-skeleton \(T^{(1)} \) of \(T \), treated as a subset of \(Y_2 \), to put it in the manifold set of another 3-gm \(Y_1 \). At each 1-simplex \(\tau \in T \), whereas \(Int(\tau) \) has a neighborhood \(V_\tau \) in \(X \) whose structure is represented schematically in Figure 1(a), the neighborhood \(\phi_2^{-1}(V_\tau) \) in \(Y_2 \) has structure represented in Figure 1(b). This is the spot where the value of preferred 2-polyhedron is exposed. Each \(\tau \in T^{(1)} \) is a face of 2-simplexes \(\sigma_1, \sigma_2, \ldots, \sigma_m, m \geq 1 \), in \(T \); we presume these are arranged in a circular order, in the sense that both \(\sigma_j \) and \(\sigma_{j+1} \) meet the frontier of some component \(W_j \) of \(V_\tau - P \).

With care in the construction of \(V_\tau \), we can assure that \(W_1, W_2, \ldots, W_m \) constitute all the components of \(V_\tau - P \).

The only significant difference between the structures in \(X \) or \(Y_2 \) and the schematics is that \(Int(\tau) \) is an open interval, not just the special point in schematics. The segments emanating from that point in Figure 1 also must be enlarged by taking Cartesian products with that open interval, regarded as \(Int(\tau) \).

In place of each \(Int(\tau) \) we will insert \(Int(\tau) \times B^2 \) into \(Y_2 \) to form a new 3-gm \(Y_1 \) (topologized like \(Y_2 \)) and cell-like map \(\phi_1 : Y_1 \rightarrow Y_2 \), one which is conservative over \((Y_2 - T^{(1)}) \cup T^{(0)} \). Specifically, replace \(Y_2 - T^{(0)} \) with the space obtained from the disjoint union of \(Int(\tau) \times B^2 \), thickened 2-simplexes \(\sigma_i \times [-1,1] \) and closures \(ClW_j \) of components of the various \(\phi_2^{-1}(V_\tau - P) \) by attaching \(Int(\tau) \times [-1,1] \subset \sigma_i \times [-1,1] \) to an arc of \(Int(\tau) \times \partial B^2 \), as shown in Figure 2, and (localized) by attaching \(ClW_j \) to

\[
Int(\sigma_j) \times [-1,1] \cup Int(\sigma_{j+1}) \times [-1,1] \cup Int(\tau) \times \partial B^2
\]

via the map sending \(z \in ClW_j \cap (\sigma_j - \tau) \) to \(z \times 1 \in Int(\sigma_j) \times [-1,1] \) and sending \(z \in ClW_j \cap (\sigma_{j+1} - \tau) \) to \(z \times -1 \in Int(\sigma_{j+1}) \times [-1,1] \). The cell-like map \(\phi_1 \)
Figure 1.

Figure 2.

amounts to first coordinate projection $\text{Int}(\tau) \times B^2 \rightarrow \text{Int}(\tau)$ wherever that makes sense; elsewhere it is conservative. Let \tilde{P}_2 denote the preferred 2-polyhedron of (2) obtained in Y_2, and let P_τ denote the product of $\text{Int}(\tau)$ with the segments in B^2.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
associated with \(\tau \); then the preferred 2-polyhedron \(\widetilde{P}_1 \) of (2), contained, except for its 0-skeleton, in \(M(Y_1) \), is the closure of \(\phi_1^{-1}(P_2 - |T^{(1)}|) \cup (\bigcup \sigma_v(P_v) \setminus P_v) \). The \(J^* \) at this stage are defined similarly. Note that each nontrivial point preimage under \(\phi_1 \) meets \(S(Y_1) \) in a finite set.

When \(y_1 \in \text{Int}(\tau) \cap M(Y_2), \tau \in T^{(1)} \), one can find a small neighborhood \(N \) of \(y_1 \) such that \(\phi_1^{-1}(N) \) can be expressed as \((B^+ \times \mathbb{R}) \cup (\bigcup \text{Cl}(V_i))_{i=1}^s\), where \(\{V_i\} \) is the collection of components of \(N - P_2 \) and \(B^+ \) is a disk \(B \) to which \(s \) open collars on arcs \(\alpha_1, \ldots, \alpha_s \) are attached, where \(\alpha_i \cap \alpha_{i+1} = a_i \) and \(\text{Cl}(V_i) \cap (B \times \mathbb{R}) = a_i \times \mathbb{R} \). Repeated applications of Lemma 3.6 one for each component \(V_i \), yields that \(\phi_1^{-1}(M(Y_2)) \) is a 3-manifold.

Finally we must blow up vertices \(v \in T^{(0)} \) to 3-cells \(B_v \). Each \(v \) has a well-defined link \(L_v \) in \(P \subset X \) and a thickening \(T_v = (\phi_2 \phi_1)^{-1}(L_v) \) of a copy of \(L_v \), namely, \(T_v \cap \widetilde{P}_1 \), to a compact 2-manifold with boundary. We argue that \(T_v \) embeds in a 2-sphere \(S_v \).

Claim. The space \(S_v \) obtained by attaching a disk to each component of \(\partial T_v \) is a 2-sphere.

Proof of the Claim. There is a closed neighborhood \(C_v \) of \(v \) in \(Y_1 \) that meets \((\phi_2 \phi_1)^{-1}(P) \) in a subset homeomorphic to the cone (from \(v \)) over \(T_v \). Set \(C_v^* = C_v \cap (\phi_2 \phi_1)^{-1}(P) \). Replace the various component closures \(Z_1, \ldots, Z_t \) of \(C_v - C_v^* \) by 3-cells \(B_1, \ldots, B_t \) with

\[
B_j \cap C_v^* = Z_j \cap C_v^* = \text{cone}J \ (= \text{2-cell}),
\]

\(J \) representing a component of \(\partial T_v \), to form \(Q_v = C_v^* \cup \bigcup B_j \). Note that \(Q_v \) can be regarded as the cone from \(v \) over \(S_v \), where \(S_v \) denotes \(\tilde{T}_v \) capped off with 2-cells, one in each \(\partial B_j \setminus \{v\} \). Clearly \(S_v \) is a 2-manifold. Moreover, each 1-cycle \([z]\) in \(S_v - \{v\} \) is homologous to one in \(T_v \subset S_v \). Since loops in \(T_v \) can be deformed in \(X_v \setminus \{v\} \) arbitrarily close to \(v \) and since \(\text{Int}(C_v) \) is a 3-gm, each such loop \(\lambda \) is null homologous in \(C_v - \{v\} \). In view of the fact that the various \(B_j - \{v\} \) are absolute extensors, the inclusion \(C_v - \{v\} \to Q_v - \{v\} \) factors through \(C_v - \{v\} \). It follows that each \(\lambda \) is null-homologous in \(Q_v - \{v\} \simeq S_v \times [0, 1] \). Hence, \(H_1(S_v) \cong 0 \), and \(S_v \) must be a 2-sphere, which completes the proof of the Claim.

Continuing with the proof of 3.6, we regard \(S_v \) as the boundary of a 3-cell \(B_v \), replace each \(v \in T^{(0)} \) with \(B_v \) in a new 3-gm \(Y_0 \), and define \(\phi_0: Y_0 \to Y_1 \) as the map sending each \(B_v \) to the associated vertex \(v \) and being conservative over the complement of the 0-skeleton \(T^{(0)} \). Here the \(S_v \) of the Claim is modified by identifying each of the (abstractly) attached disks to points, which does not change \(S_v \) topologically. It has the benefit of providing a finite set \(F_v \subset S_v \) such that \(S_v - F_v \) has a neighborhood which meets \(\phi_0^{-1}(Y_1 - |T^{(0)}|) \) in a 3-manifold thickening of \(\phi_0^{-1}(\tilde{P}_1 - |T^{(0)}|) \). The topology near \(B_v \) can be arranged so that the closure of \(\phi_0^{-1}(\tilde{P}_1 - |T^{(0)}|) \) meets \(S_v \) in a 1-dimensional polyhedron \(\tilde{K}_v \). Again each \(\phi_0^{-1}(z) \cap S(Y_0) \) is finite, and \(\tilde{K}_v \) is a strong deformation retract of \(S_v - F_v \). The final \(\tilde{P} = \tilde{P}_0 \) of \(\phi_0^{-1}(\tilde{P}_1 - |T^{(0)}|) \cup (\text{cone over } \tilde{K}_v) \); the final \(J^* \) is obtained similarly.

The desired map will be \(\phi = \phi_0 \phi_1 \phi_0^{-1} \). As in Lemma 3.6 it is a near-homeomorphism over \(M(X) \), so its retraction to \(\phi^{-1}(M(X)) \subset M(Y) \) is cellular [11, Prop. 5.1].

The map \(\phi: Y \to X \) in the conclusion of the preceding lemma will be called an inflation of \(X \) at \(K \).
Lemma 5.4. Suppose X is a 3-gm satisfying the RSAP. Then there exists a sequence $\{K_i, P_i\}_{i \geq 1}$ of tame-preferred polyhedral pairs in X, with $P_i \subset P_{i+1}$ for all $i \geq 1$, and there exists a sequence of maps $\mu_i : R_i \to X$ defined on compact 2-polyhedra R_i, with $\mu_i(R_i) \subset P_i$ for all $i \geq 1$, such that corresponding to any two points $x, x' \in X$ is an index $k \in \mathbb{N}$ for which μ_k homologically separates x from x' in X.

Proof. Being treatable componentwise as a separable metric space, by an initial assumption, X has a countable basis Ω. Enumerate the countable collection of pairs $\Lambda = (W_j, W'_j)_{j=1}^{\infty} \in \Omega \times \Omega$ for which $\text{Cl}(W_j) \subset W'_j$ and some map $\nu_j : R_j \to X$, defined on a compact 2-polyhedron R_j, homologically separates $\text{Cl}(W_j)$ from $X - W'_j$. Lemma 3.3 assures that for any two points $x, x' \in X$ there is a pair $(W_j, W'_j) \in \Lambda$ with $x \in W_j$, $x' \in X - W'_j$.

Since X satisfies RSAP, Theorem 4.8 provides a tame-preferred polyhedron pair (K_1, P_1) in X and a map $\mu_1 : R_1 \to X$ with $\mu_1(R_1) \subset P_1$, such that μ_1 homologically separates $\text{Cl}(W_1)$ and $X - W'_1$.

Assume that we have already produced a finite collection of tame-preferred polyhedral pairs $(K_1, P_1), (K_2, P_2), \ldots, (K_t, P_t)$ in X with $P_1 \subset P_2 \subset \cdots \subset P_t$ and maps $\mu_j : R_j \to X$ with $\mu_j(R_j) \subset P_j$ and with μ_j strongly separating $\text{Cl}(W_j)$ and $X - W'_j$ ($j = 1, 2, \ldots, t$). Again Theorem 4.8 provides a tame-preferred polyhedron pair (K_{t+1}, P_{t+1}) in X with $P_{t+1} \supset P_t$ and a map $\mu_{t+1} : R_{t+1} \to X$ with $\mu_{t+1}(R_{t+1}) \subset P_{t+1}$ such that μ_{t+1} homologically separates $\text{Cl}(W_{t+1})$ and $X - W'_{t+1}$.

Lemma 5.5 (Resolution). Suppose the 3-gm X contains a sequence $\{P_i\}_{i=1}^{\infty}$ of compact, preferred 2-polyhedra such that $P_i \subset P_{i+1}$ for all $i \geq 1$. Then there exist a 3-gm Y and a proper, cell-like, surjective map $\Phi : Y \to X$ satisfying the following conditions:

(i) every map $\mu : R \to P_k$, $k \in \mathbb{N}$, defined on a compact 2-polyhedra R has approximate lifts into $M(Y)$, and

(ii) for each $p \in X$, $\dim(\Phi^{-1}(p) \cap S(Y)) \leq 0$.

Proof. Set $X_1 = X$ and $\{P^{(1)}_i = P_i\}_{i=1}^{\infty}$. By induction we will construct, for each $n \in \mathbb{N}$, a proper, cell-like map $\phi_{n+1,n} : X_{n+1} \to X_n$ together with a certain sequence, $\{P_{i}^{(n+1)}\}_{i=n+1}^{\infty}$, of compact, preferred 2-polyhedra in X_{n+1}. The desired map $\Phi : Y \to X$ will be the inverse limit of the inverse sequence of maps $\{X_n, \phi_{n+1,n}\}$.

Apply Inflation Lemma 5.3 to obtain an inflation $\phi_{2,1} : X_2 \to X_1$ at $P_0^{(1)} = P_1$. Among other features, this provides a 2-polyhedron $\bar{P}_1 \subset M(\phi_{2,1}^{-1}(P_1)) \subset X_2$ where $\phi_{2,1} : \bar{P}_1 \to P_1$ is cell-like. Let $\{P^{(2)}_{i} \}_{i=2}^{\infty}$ be approximate lifts of P_1 described in conclusion (3) there. Assuming cell-like maps $\phi_{n+1,n} : X_{n+1} \to X_n$ defined on 3-gms X_{n+1} have been obtained for $n = 1, 2, \ldots, t$, along with approximate lifts $\{P_{j}^{(n+1)}\}_{j=n+1}^{\infty}$ of $\{P_{j}^{(n)}\}_{j=n+1}^{\infty}$, and 2-polyhedra $\bar{P}_n \subset M(\phi_{n+1,n}^{-1}(P_{n}^{(n)})) \subset X_{n+1}$ for which $\phi_{n+1,n} : \bar{P}_n \to P_{n}^{(n)}$ is cell-like, apply Inflation Lemma 5.3 again to obtain an inflation of X_{n+1} at $P_{n+1}^{(n+1)}$, thereby producing the next level of objects for $n = t + 1$.

We conclude immediately from Lemma 3.2 that the inverse sequence $\{X_n, \phi_{n+1,n}\}$ has inverse limit $\Phi : Y \to X_1 = X$, with Y a 3-gm and Φ a cell-like map.
To verify conclusion (i), note that any map \(\mu: R \to P_k \) can be approximately lifted, successively, to maps \(\mu_i: R \to P_k^{(i)}, i = 1, 2, \ldots, k \), and, finally, to \(\mu_{k+1}: R \to \tilde{P}_k \subset M(\phi_{k+1}^{-1}(P_k^{(k)})) \subset X_{k+1} \). According to Lemma 5.3, \(\Phi_{k+1}^{-1}(M(X_{k+1})) \) is a 3-manifold (where \(\Phi_{k+1} \) satisfies \(\Phi = \phi_{k+1,0} \Phi_{k+1} \)). Hence, \(\mu \) has approximate lifts to \(M(Y) \).

To verify conclusion (ii), let \(A_0 \) denote \(\{p\} \) and recursively let \(A_n \) denote \(\phi_{n,n-1}^{-1}(A_{n-1}) - M(X_n) \) for \(n \in \mathbb{N} \). Each set \(A_n \) is finite, by conclusion (4) of Lemma 5.3. Furthermore, \(\Phi^{-1}(p) \cap S(Y) \subset A_\infty = \varprojlim A_n \). But the inverse limit of finite sets is 0-dimensional.

Corollary 5.6. A 3-gm \(X \) has a near-resolution if there exist a sequence \(\{P_i\}_{i=1}^\infty \) of preferred 2-polyhedra in \(X \) and a family of maps \(\{\mu_i: R_i \to X\}_{i=1}^\infty \) satisfying the following conditions:

(i) \(\mu_i(R_i) \subset P_i \) for every \(i \geq 1 \),
(ii) \(P_i \subset P_{i+1} \) for every \(i \geq 1 \), and
(iii) given distinct points \(p, q \in X \) there exists \(k \in \mathbb{N} \) such that \(\Phi_k \) homologically separates \(p \) from \(q \).

Proof: Applying Resolution Lemma 5.4 to \(X \) and \(\{P_i\}_{i=1}^\infty \), we obtain \(\Phi: Y \to X \) such that, for all \(x \in X \), \(S(Y) \cap \Phi^{-1}(x) \) is 0-dimensional. We will show that \(\dim S(Y) \leq 0 \), which will imply that \(Y \) has a near resolution \(\psi: M \to Y \). The near-resolution of \(X \) then will be \(\Phi \psi: M \to X \).

To show that \(\dim S(Y) \leq 0 \), we first establish the following

Claim. For any two distinct points \(p \) and \(q \) of \(X \) there exists a map \(\kappa: R \to Y \) defined on a compact 2-polyhedron \(R \) such that \(\kappa(R) \) strongly separates \(\Phi^{-1}(p) \) from \(\Phi^{-1}(q) \) and \(\kappa(R) \subset M(Y) \).

Proof of the Claim. Choose \(i \in \mathbb{N} \) such that \(\mu_i \) homologically separates \(p \) and \(q \) in \(X \). Endow \(X \) with a metric, and choose \(\epsilon > 0 \) such that any \(\epsilon \)-approximation to \(\mu_i \) is homotopic to \(\mu_i \) in \(X - \{p, q\} \). By Resolution Lemma 5.5, \(\mu_i \) has an \(\epsilon \)-lift \(\kappa \) to \(M(Y) \). Since \(\Phi_k \) is homotopic to \(\mu_i \) in \(X - \{p, q\} \) and \(\Phi \) restricts to a proper homotopy equivalence of the pairs

\[
(Y, Y - \Phi^{-1}(\{p, q\})) \to (X, X - \{p, q\}),
\]

it follows that \(\kappa \) homologically separates \(\Phi^{-1}(p) \) and \(\Phi^{-1}(q) \). By Lemma 5.3, \(\kappa \) strongly separates \(\Phi^{-1}(p) \) and \(\Phi^{-1}(q) \).

Given a component \(C \) of \(S(Y) \), one can immediately produce an \(x_C \in X \) for which \(C \subset \Phi^{-1}(x_C) \), using the Claim. Since \(C \subset S(Y) \cap \Phi^{-1}(x_C) \) and since \(\dim[S(Y) \cap \Phi^{-1}(x_C)] \leq 0 \) by conclusion (ii) of Lemma 5.3, \(C \) must be a singleton. Hence, \(\dim S(Y) \leq 0 \).

Proof of Theorem 5.1 Apply Lemma 5.4 to obtain a sequence \(\{(K_i, P_i)\}_{i \geq 1} \) of compact, tame-preferred polyhedral pairs such that \(P_i \subset P_{i+1} \) for all \(i \geq 1 \) and any two points of \(X \) are homologically separated by some map \(\mu: R \to P_k \) into one of these \(P_i \). Corollary 5.6 assures that \(X \) has a near-resolution.

References

3. R. H. Bing, A decomposition of E³ into points and tame arcs such that the decomposition space is topologically different from E³, Ann. of Math. (2) 65 (1957), 484–500. MR19:11872

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF TENNESSEE AT KNOXVILLE, KNOXVILLE, TENNESSEE 37996-1300
E-mail address: daverman@math.utk.edu

DEPARTMENT OF MATHEMATICS, TEXAS STATE UNIVERSITY, SAN MARCOS, TEXAS 78666
E-mail address: tt04@txstate.edu