The 3-manifold recognition problem

Authors:
Robert J. Daverman and Thomas L. Thickstun

Journal:
Trans. Amer. Math. Soc. **358** (2006), 5257-5270

MSC (2000):
Primary 57N10, 57P99; Secondary 57M30, 57N60, 57N75

DOI:
https://doi.org/10.1090/S0002-9947-05-03786-4

Published electronically:
December 20, 2005

MathSciNet review:
2238915

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a natural Relative Simplicial Approximation Property for maps from a 2-cell to a generalized 3-manifold and prove that, modulo the Poincaré Conjecture, 3-manifolds are precisely the generalized 3-manifolds satisfying this approximation property. The central technical result establishes that every generalized 3-manifold with this Relative Simplicial Approximation Property is the cell-like image of some generalized 3-manifold having just a 0-dimensional set of nonmanifold singularities.

**1.**F. D. Ancel,*An alternative proof of M. Brown's theorem on inverse sequences of near homeomorphisms*, Geometric topology and shape theory (Dubrovnik, 1986), pp. 1-2, Lecture Notes in Math., vol. 1283, Springer, Berlin,New York, 1987. MR**89d:54003****2.**Steve Armentrout,*Cellular decompositions of -manifolds that yield -manifolds*, Memoirs Amer. Math. Soc., No. 107, Amer. Math. Soc., Providence, RI, 1971. MR**54:1225****3.**R. H. Bing,*A decomposition of into points and tame arcs such that the decomposition space is topologically different from*, Ann. of Math. (2)**65**(1957), 484-500. MR**19:1187g****4.**R. H. Bing,*A surface is tame if its complement is -ULC*, Trans. Amer. Math. Soc.**101**(1961), 294-305. MR**24:A1117****5.**G. E. Bredon,*Generalized manifolds, revisited*, 1970 Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga, 1969), pp. 461-469, Markham, Chicago, Ill., 1970. MR**43:1193****6.**Morton Brown,*Some applications of an approximation theorem for inverse limits*, Proc. Amer. Math. Soc.**11**(1960), 478-483. MR**22:5959****7.**J. Bryant, S. Ferry, W. Mio and S. Weinberger,*Topology of homology manifolds*, Ann. of Math. (2)**143**(1996), no. 3, 435-467. MR**97b:57017****8.**J. W. Cannon,*ULC properties in neighbourhoods of embedded surfaces and curves in*, Canad. J. Math.**25**(1973), 31-73. MR**47:2589****9.**J. W. Cannon,*The recognition problem*:*what is a topological manifold*? Bull. Amer. Math. Soc.**84**(1978), 832-866. MR**58:13043****10.**R. J. Daverman,*A new proof for the Hosay-Lininger theorem about crumpled cubes*, Proc. Amer. Math. Soc.**23**(1969), 52-54. MR**39:7578****11.**R. J. Daverman,*Decompositions of Manifolds*, Pure and Applied Mathematics, 124, Academic Press, Inc., Orlando, Fl., 1986. MR**88a:57001****12.**R. J. Daverman and D. R. Repovš,*General position properties that characterize -manifolds*, Canad. J. Math.**44**(1992), 234-251. MR**93d:57038****13.**R. D. Edwards,*The topology of manifolds and cell-like maps*, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 111-127, Acad. Sci. Fennica, Helsinki, 1980. MR**81g:57010****14.**L. L. Lininger,*Some results on crumpled cubes*, Trans. Amer. Math. Soc.**118**(1965), 534-549. MR**31:2717****15.**D. R. McMillan, Jr.,*A criterion for cellularity in a manifold*. II. Trans. Amer. Math. Soc.**126**(1967), 217-224. MR**34:8392****16.**W. J. R. Mitchell,*Defining the boundary of a homology manifold*, Proc. Amer. Math. Soc.**110**(1990), 509-513. MR**90m:57015****17.**W. J. R. Mitchell and D. Repovš,*The topology of cell-like mappings*, Conference on Differential Geometry and Topology (Sardinia, 1988), Rend. Sem. Fac. Sci. Univ. Cagliari**58**(1988), suppl., 265-300. MR**92f:54012****18.**Victor A. Nicholson,*-FLG complexes are tame in -manifolds*, General Topology and Appl.**2**(1972), 277-285. MR**47:5877****19.**Frank Quinn,*An obstruction to the resolution of homology manifolds*, Michigan Math. J.**34**(1987), 285-291. MR**88j:57016****20.**Frank Raymond,*Separation and union theorems for generalized manifolds with boundary*, Michigan Math. J.**7**(1960), 7-21. MR**22:11388****21.**L. C. Siebenmann,*Approximating cellular maps by homeomorphisms*, Topology**11**(1972), 271-294. MR**45:4431****22.**T. L. Thickstun,*An extension of the Loop theorem and resolutions of generalized -manifolds with 0-dimensional singular set*, Invent. Math.**78**(1984), 161-222. MR**86f:57007****23.**T. L. Thickstun,*Resolutions of generalized -manifolds whose singular sets have general position dimension one*, Topology Appl.**138**(2004), 61-95. MR**2005b:57043****24.**R. L. Wilder,*Topology of manifolds*, Amer. Math. Soc. Colloquium Publ., vol. 32, Amer. Math. Soc., Providence, RI, 1979. MR**82a:57001**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
57N10,
57P99,
57M30,
57N60,
57N75

Retrieve articles in all journals with MSC (2000): 57N10, 57P99, 57M30, 57N60, 57N75

Additional Information

**Robert J. Daverman**

Affiliation:
Department of Mathematics, The University of Tennessee at Knoxville, Knoxville, Tennessee 37996-1300

Email:
daverman@math.utk.edu

**Thomas L. Thickstun**

Affiliation:
Department of Mathematics, Texas State University, San Marcos, Texas 78666

Email:
tt04@txstate.edu

DOI:
https://doi.org/10.1090/S0002-9947-05-03786-4

Keywords:
Generalized 3-manifold,
resolvable,
simplicial approximation property,
relative simplicial approximation,
tame embedding,
locally $1$-coconnected

Received by editor(s):
April 21, 2003

Received by editor(s) in revised form:
July 21, 2004

Published electronically:
December 20, 2005

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.