The 3-manifold recognition problem

Authors:
Robert J. Daverman and Thomas L. Thickstun

Journal:
Trans. Amer. Math. Soc. **358** (2006), 5257-5270

MSC (2000):
Primary 57N10, 57P99; Secondary 57M30, 57N60, 57N75

Published electronically:
December 20, 2005

MathSciNet review:
2238915

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a natural Relative Simplicial Approximation Property for maps from a 2-cell to a generalized 3-manifold and prove that, modulo the Poincaré Conjecture, 3-manifolds are precisely the generalized 3-manifolds satisfying this approximation property. The central technical result establishes that every generalized 3-manifold with this Relative Simplicial Approximation Property is the cell-like image of some generalized 3-manifold having just a 0-dimensional set of nonmanifold singularities.

**1.**Fredric D. Ancel,*An alternative proof of M. Brown’s theorem on inverse sequences of near homeomorphisms*, Geometric topology and shape theory (Dubrovnik, 1986) Lecture Notes in Math., vol. 1283, Springer, Berlin, 1987, pp. 1–2. MR**922266**, 10.1007/BFb0081413**2.**Steve Armentrout,*Cellular decompositions of 3-manifolds that yield 3-manifolds*, American Mathematical Society, Providence, R. I., 1971. Memoirs of the American Mathematical Society, No. 107. MR**0413104****3.**R. H. Bing,*A decomposition of 𝐸³ into points and tame arcs such that the decomposition space is topologically different from 𝐸³*, Ann. of Math. (2)**65**(1957), 484–500. MR**0092961****4.**R. H. Bing,*A surface is tame if its complement is 1-ULC*, Trans. Amer. Math. Soc.**101**(1961), 294–305. MR**0131265**, 10.1090/S0002-9947-1961-0131265-1**5.**Glen E. Bredon,*Generalized manifolds, revisited*, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 461–469. MR**0275437****6.**Morton Brown,*Some applications of an approximation theorem for inverse limits*, Proc. Amer. Math. Soc.**11**(1960), 478–483. MR**0115157**, 10.1090/S0002-9939-1960-0115157-4**7.**J. Bryant, S. Ferry, W. Mio, and S. Weinberger,*Topology of homology manifolds*, Ann. of Math. (2)**143**(1996), no. 3, 435–467. MR**1394965**, 10.2307/2118532**8.**J. W. Cannon,*𝑈𝐿𝐶 properties in neighbourhoods of embedded surfaces and curves in 𝐸³*, Canad. J. Math.**25**(1973), 31–73. MR**0314037****9.**J. W. Cannon,*The recognition problem: what is a topological manifold?*, Bull. Amer. Math. Soc.**84**(1978), no. 5, 832–866. MR**0494113**, 10.1090/S0002-9904-1978-14527-3**10.**Robert J. Daverman,*A new proof for the Hosay-Lininger theorem about crumpled cubes*, Proc. Amer. Math. Soc.**23**(1969), 52–54. MR**0246274**, 10.1090/S0002-9939-1969-0246274-4**11.**Robert J. Daverman,*Decompositions of manifolds*, Pure and Applied Mathematics, vol. 124, Academic Press, Inc., Orlando, FL, 1986. MR**872468****12.**R. J. Daverman and D. Repovš,*General position properties that characterize 3-manifolds*, Canad. J. Math.**44**(1992), no. 2, 234–251. MR**1162341**, 10.4153/CJM-1992-016-x**13.**Robert D. Edwards,*The topology of manifolds and cell-like maps*, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 111–127. MR**562601****14.**Lloyd L. Lininger,*Some results on crumpled cubes*, Trans. Amer. Math. Soc.**118**(1965), 534–549. MR**0178460**, 10.1090/S0002-9947-1965-0178460-7**15.**D. R. McMillan Jr.,*A criterion for cellularity in a manifold. II*, Trans. Amer. Math. Soc.**126**(1967), 217–224. MR**0208583**, 10.1090/S0002-9947-1967-0208583-7**16.**W. J. R. Mitchell,*Defining the boundary of a homology manifold*, Proc. Amer. Math. Soc.**110**(1990), no. 2, 509–513. MR**1019276**, 10.1090/S0002-9939-1990-1019276-9**17.**W. J. R. Mitchell and D. Repovš,*The topology of cell-like mappings*, Rend. Sem. Fac. Sci. Univ. Cagliari**58**(1988), no. suppl., 265–300. Conference on Differential Geometry and Topology (Sardinia, 1988). MR**1122860****18.**Victor A. Nicholson,*1-𝐹𝐿𝐺 complexes are tame in 3-manifolds*, General Topology and Appl.**2**(1972), 277–285. MR**0317330****19.**Frank Quinn,*An obstruction to the resolution of homology manifolds*, Michigan Math. J.**34**(1987), no. 2, 285–291. MR**894878**, 10.1307/mmj/1029003559**20.**Frank Raymond,*Separation and union theorems for generalized manifolds with boundary.*, Michigan Math. J**7**(1960), 7–21. MR**0120638****21.**L. C. Siebenmann,*Approximating cellular maps by homeomorphisms*, Topology**11**(1972), 271–294. MR**0295365****22.**T. L. Thickstun,*An extension of the loop theorem and resolutions of generalized 3-manifolds with 0-dimensional singular set*, Invent. Math.**78**(1984), no. 2, 161–222. MR**767192**, 10.1007/BF01388594**23.**T. L. Thickstun,*Resolutions of generalized 3-manifolds whose singular sets have general position dimension one*, Topology Appl.**138**(2004), no. 1-3, 61–95. MR**2035473**, 10.1016/j.topol.2003.07.002**24.**Raymond Louis Wilder,*Topology of manifolds*, American Mathematical Society Colloquium Publications, vol. 32, American Mathematical Society, Providence, R.I., 1979. Reprint of 1963 edition. MR**598636**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
57N10,
57P99,
57M30,
57N60,
57N75

Retrieve articles in all journals with MSC (2000): 57N10, 57P99, 57M30, 57N60, 57N75

Additional Information

**Robert J. Daverman**

Affiliation:
Department of Mathematics, The University of Tennessee at Knoxville, Knoxville, Tennessee 37996-1300

Email:
daverman@math.utk.edu

**Thomas L. Thickstun**

Affiliation:
Department of Mathematics, Texas State University, San Marcos, Texas 78666

Email:
tt04@txstate.edu

DOI:
https://doi.org/10.1090/S0002-9947-05-03786-4

Keywords:
Generalized 3-manifold,
resolvable,
simplicial approximation property,
relative simplicial approximation,
tame embedding,
locally $1$-coconnected

Received by editor(s):
April 21, 2003

Received by editor(s) in revised form:
July 21, 2004

Published electronically:
December 20, 2005

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.