On the variety generated by all nilpotent lattice-ordered groups

Authors:
V. V. Bludov and A. M. W. Glass

Journal:
Trans. Amer. Math. Soc. **358** (2006), 5179-5192

MSC (2000):
Primary 06F15, 20F18, 20F12

DOI:
https://doi.org/10.1090/S0002-9947-06-03882-7

Published electronically:
July 25, 2006

MathSciNet review:
2238913

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 1974, J. Martinez introduced the variety of weakly Abelian lattice-ordered groups; it is defined by the identity

**1.**V. V. Bludov,*On locally nilpotent groups*, Trudy Inst. Mat. Sobolev**30**(1996), 26-47 (in Russian): English translation, Siberian Advances in Math.**8**(1998) 49-79. MR**1651902 (99m:20074)****2.**V. V. Bludov, A. M. W. Glass and A. H. Rhemtulla,*Ordered groups in which all convex jumps are central*, J. Korean Math. Soc.**40**(2003), 225-239. MR**1958028 (2003j:06020)****3.**V. V. Bludov, A. M. W. Glass and A. H. Rhemtulla,*On centrally ordered groups*, J. Algebra**291**(2005), 129-143. MR**2158514 (2006h:20053)****4.**A. M. W. Glass,*Partially Ordered Groups*, World Scientific Pub. Co., Singapore, 1999. MR**1791008 (2001g:06002)****5.**A. M. W. Glass,*Weakly Abelian lattice-ordered groups*, Proc. American Math. Soc.**129**(2001), 677-684; corrigendum:*ibid***130**(2001), 925-926. MR**1801994 (2002a:06022)****6.**S. A. Gurchenkov,*On varieties of weakly Abelian -groups*, Mat. Slovaca**42**(1992), 437-441. MR**1195037 (94a:20067)****7.**P. Hall,*Nilpotent Groups*, Lectures given at the Canadian Mathematical Congress, University of Alberta, 1957.**8.**V. M. Kopytov,*Lattice-ordered locally nilpotent groups*, Algebra i Logika**14**(1975), 407-413 (in Russian); English translation Algebra and Logic**14**(1975), 249-251. MR**0401583 (53:5410)****9.**V. M. Kopytov and N. Ya. Medvedev,*The Theory of Lattice-ordered Groups*, Kluwer Acad. Pub., Dordrecht, 1994. MR**1369091 (97k:06028)****10.**Kourovka Notebook,*Unsolved Problems in Group Theory*, eds. V. D. Mazurov and E. I. Khukhro, th edition, Novosibirsk, 1995. MR**1392713 (97d:20001)****11.**J. Martinez,*Varieties of lattice-ordered groups*, Math. Z.**137**(1974), 265-284. MR**0354483 (50:6961)****12.**R. B. Mura and A. H. Rhemtulla,*Orderable Groups*, Lecture Notes in Pure and Applied Maths.**27**, M. Dekker, New York, 1977. MR**0491396 (58:10652)****13.**N. R. Reilly,*Nilpotent, weakly Abelian and Hamiltonian lattice-ordered groups*, Czech. Math. J.**33**(1983), 348-353. MR**0718919 (85m:06035)****14.**D. J. S. Robinson,*A Course in the Theory of Groups*(second edition), Graduate Texts in Math.**80**, Springer-Verlag, Heidelberg, 1996. MR**1357169 (96f:20001)****15.**R. Warfield,*Nilpotent Groups*, Lecture Notes in Math. 513, Springer-Verlag, Berlin, 1976. MR**0409661 (53:13413)****16.***The Black Swamp Problem Book*is edited by W. Charles Holland (Bowling Green State University, Ohio 43403, U.S.A.) and is kept there by him (in the formerly Black Swamp region of Ohio).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
06F15,
20F18,
20F12

Retrieve articles in all journals with MSC (2000): 06F15, 20F18, 20F12

Additional Information

**V. V. Bludov**

Affiliation:
Institute of Mathematics and Economics, Irkutsk State University, Irkutsk, 664003 Russia

Email:
bludov@math.isu.ru

**A. M. W. Glass**

Affiliation:
Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Rd., Cambridge CB3 0WB, England

Email:
amwg@dpmms.cam.ac.uk

DOI:
https://doi.org/10.1090/S0002-9947-06-03882-7

Keywords:
Nilpotent group,
residually torsion-free-nilpotent,
variety,
quasi-variety,
commutator calculus,
lattice-ordered group,
weakly Abelian

Received by editor(s):
December 27, 2003

Published electronically:
July 25, 2006

Additional Notes:
The first author was supported by the Russian Foundation for Basic Research, grant no. 03-01-00320

Dedicated:
To Valerie Kopytov on his sixty-fifth birthday

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.