Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Varieties with small discriminant variety


Authors: Antonio Lanteri and Roberto Muñoz
Journal: Trans. Amer. Math. Soc. 358 (2006), 5565-5585
MSC (2000): Primary 14J40, 14N05, 14C20; Secondary 14F05, 14M99
DOI: https://doi.org/10.1090/S0002-9947-06-03915-8
Published electronically: July 20, 2006
MathSciNet review: 2238927
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a smooth complex projective variety, let $ L$ be an ample and spanned line bundle on $ X$, $ V\subseteq H^{0}(X,L)$ defining a morphism $ \phi _{V}:X \to \mathbb{P}^{N}$ and let $ \mathcal{D}(X,V)$ be its discriminant locus, the variety parameterizing the singular elements of $ \vert V\vert$. We present two bounds on the dimension of $ \mathcal{D}(X,V)$ and its main component relying on the geometry of $ \phi _{V}(X) \subset \mathbb{P}^{N}$. Classification results for triplets $ (X,L,V)$ reaching the bounds as well as significant examples are provided.


References [Enhancements On Off] (What's this?)

  • [BFS] M. C. Beltrametti, M. L. Fania, and A. J. Sommese, On the discriminant variety of a projective manifold, Forum Math. 4 (1992), 529-547. MR 1189013 (93k:14049)
  • [BS] M. C. Beltrametti and A. J. Sommese, The Adjunction Theory of Complex Projective Varieties, De Gruyter Expositions in Math., vol. 16, De Gruyter, 1995. MR 1318687 (96f:14004)
  • [BSW] M. C. Beltrametti, A. J. Sommese, and J. A. Wisniewski, Results on varieties with many lines and their applications to adjunction theory, Complex Algebraic Varieties, Proc. Bayreuth 1990, Lect. Notes in Math, vol. 1507, Springer, 1992, pp. 16-38. MR 1178717 (93i:14007)
  • [C] F. Campana, Connexité rationelle des variétés de Fano, Ann. Sci. Ec. Norm. Sup. 25 (1992), 539-545. MR 1191735 (93k:14050)
  • [E1] L. Ein, Varieties with small dual varieties I, Invent. Math. 86 (1986), 63-74. MR 0853445 (87m:14047)
  • [E2] -, Varieties with small dual varieties II, Duke Math. J. 52 (1985), 895-907. MR 0816391 (87m:14048)
  • [F] T. Fujita, Classification theories of polarized varieties, London Math. Soc. Lecture Notes Series 155, Cambridge Univ. Press, 1990. MR 1162108 (93e:14009)
  • [I] P. Ionescu, Generalized adjunction and applications, Math. Proc. Camb. Phil. Soc. 99 (1986), 457-472. MR 0830359 (87e:14031)
  • [KMM] J. Kollár, Y. Miyaoka, and S. Mori, Rational connectedness and boundedness of Fano manifolds, J. Diff. Geom. 36 (1992), 765-769. MR 1189503 (94g:14021)
  • [LPS1] A. Lanteri, M. Palleschi, and A. J. Sommese, On the discriminant locus of an ample and spanned line bundle, J. Reine Angew. Math. 477 (1996), 199-219. MR 1405315 (97h:14008)
  • [LPS2] -, Discriminant loci of varieties with smooth normalization, Comm. Algebra 28 (2000), 4179-4200; Erratum, Comm. Algebra 31 (2003), 2027-2028. MR 1772001 (2002a:14007)
  • [LS1] A. Lanteri and. D. Struppa, Some topological conditions for projective algebraic manifolds with degenerate dual varieties: connections with $ P$-bundles, Rend. Accad. Naz. Lincei (VIII) 77 (1984), 155-158. MR 0884367 (88g:14017)
  • [LS2] -, Projective 7-folds with positive defect, Compositio Math. 61 (1987), 329-337. MR 0883486 (88c:14059)
  • [MP] E. Mezzetti and D. Portelli, On threefolds covered by lines, Abh. Math. Sem. Univ. Hamburg 70 (2000), 211-238. MR 1809546 (2001k:14074)
  • [M1] R. Muñoz, Varieties with low dimensional dual variety, Manuscripta Math. 94 (1997), 427-435. MR 1484636 (99k:14085)
  • [M2] -, Varieties with degenerate dual variety, Forum Math. 13 (2001), 757-779. MR 1861248 (2002h:14089)
  • [M3] -, Varieties with almost maximal defect, Rend. Istit. Lombardo Accad. Sci. Lett. Rend. A 133 (2000), 103-114. MR 1871882 (2003c:14060)
  • [S] A. J. Sommese, On the nonemptiness of the adjoint linear system of a hyperplane section of a threefold, J. Reine Angew. Math. 402 (1989), 211-220. MR 1022801 (90j:14011)
  • [T] E. A. Tevelev, Projectively dual varieties, J. of Math. Sci. (N.Y.) 117 (2003), 4585-4732. MR 2027446 (2005c:14069)
  • [W] J. M. Wahl, Cohomological characterizations of $ \mathbb{P}^{n}$, Invent. Math. 72 (1983), 315-322. MR 0700774 (84h:14024)
  • [Z] F. L. Zak, Tangents and Secants of Algebraic Varieties, Math. Monographs, vol. 127, Amer. Math. Soc., 1993. MR 1234494 (94i:14053)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14J40, 14N05, 14C20, 14F05, 14M99

Retrieve articles in all journals with MSC (2000): 14J40, 14N05, 14C20, 14F05, 14M99


Additional Information

Antonio Lanteri
Affiliation: Dipartimento di Matematica “F. Enriques”, Università di Milano, Via C. Saldini 50, I-20133 Milano, Italy
Email: lanteri@mat.unimi.it

Roberto Muñoz
Affiliation: Departamento de Matemáticas y Física aplicadas y Cc. de la Naturaleza, Universidad Rey juan Carlos, C. Tulipán, E-28933 Móstoles Madrid, Spain
Email: roberto.munoz@urjc.es

DOI: https://doi.org/10.1090/S0002-9947-06-03915-8
Keywords: Complex projective variety, duality, defect, discriminant loci
Received by editor(s): February 17, 2004
Received by editor(s) in revised form: November 26, 2004
Published electronically: July 20, 2006
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society