Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains


Authors: Zdzislaw Brzezniak and Yuhong Li
Journal: Trans. Amer. Math. Soc. 358 (2006), 5587-5629
MSC (2000): Primary 60H15, 35R60; Secondary 37H10, 34F05
DOI: https://doi.org/10.1090/S0002-9947-06-03923-7
Published electronically: July 24, 2006
MathSciNet review: 2238928
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a notion of an asymptotically compact (AC) random dynamical system (RDS). We prove that for an AC RDS the $ \Omega$-limit set $ \Omega_B(\omega)$ of any bounded set $ B$ is nonempty, compact, strictly invariant and attracts the set $ B$. We establish that the $ 2$D Navier Stokes Equations (NSEs) in a domain satisfying the Poincaré inequality perturbed by an additive irregular noise generate an AC RDS in the energy space $ \mathrm{H}$. As a consequence we deduce existence of an invariant measure for such NSEs. Our study generalizes on the one hand the earlier results by Flandoli-Crauel (1994) and Schmalfuss (1992) obtained in the case of bounded domains and regular noise, and on the other hand the results by Rosa (1998) for the deterministic NSEs.


References [Enhancements On Off] (What's this?)

  • 1. F. Abergel,
    Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains,
    Journal of Differential Equations 83(1), 85-108 (1990).MR 1031379 (90m:58121)
  • 2. L. Arnold,
    RANDOM DYNAMICAL SYSTEMS,
    Springer-Verlag, Berlin, Heidelberg, New York, 1998. MR 1723992 (2000m:37087)
  • 3. P. Baxendale, Gaussian measures on Function Spaces, Amer. J. Math. 98, 891-952 (1976). MR 0467809 (57:7660)
  • 4. Z. Brzezniak,
    On analytic dependence of solutions of Navier-Stokes equations with respect to exterior force and initial velocity,
    Universitatis Iagellonicae Acta Mathematica, Fasciculus XXVIII, 111-124 (1991).MR 1136785 (92m:35202)
  • 5. Z. Brzezniak,
    On Sobolev and Besov spaces regularity of Brownian paths,
    Stochastics Stochastics Rep. 56, no. 1-2, 1-15 (1996). MR 1396751 (97g:60104)
  • 6. Z. Brzezniak,
    Stochastic Convolution in Banach spaces,
    Stochastics and Stochastics Reports 61, 245-295 (1997).MR 1488138
  • 7. Z. Brzezniak,
    Some remarks on Itô and Stratonovich integration in 2-smooth Banach spaces,
    pp. 48-69 in Proceedings of the Swansea 2002 Workshop on Probabilistic Methods in Fluids, World Scientific, New Jersey, London, Singapore, Hong Kong, 2003; eds.: I.M. Davies, N. Jacob, A. Truman, O. Hassan, K. Morgan, N.P. Weatherill.MR 2083364 (2005g:60085)
  • 8. Z. Brzezniak, M. Capinski and F. Flandoli,
    Pathwise global attractors for stationary random dynamical systems,
    Probability Theory and Related Fields 95, 87-102 (1993).MR 1207308 (94b:60067)
  • 9. Z. Brzezniak and Y. Li,
    Asymptotic behaviour of solutions to the 2D stochastic Navier-Stokes equations in unbounded domains - new developments,
    Proceedings of the First Sino-German Conference in Stochastic Analysis, 28 August-3 September, 2002, Beijing, in press.
  • 10. Z. Brzezniak and S. Peszat,
    Maximal Inequalities and Exponential Estimates for Stochastic Convolutions in Banach Spaces,
    Gesztesy, Fritz (ed.) et al.,
    STOCHASTIC PROCESSES, PHYSICS AND GEOMETRY: NEW INTERPLAYS. I. A volume in honor of Sergio Albeverio. Proceedings of the conference on infinite dimensional (stochastic) analysis and quantum physics, Leipzig, Germany, January 18-22, 1999, Providence, RI: American Mathematical Society (AMS). CMS Conf. Proc. 28, 55-64 (2000). MR 1803378 (2001k:60084)
  • 11. Z. Brzezniak and S. Peszat, Stochastic two dimensional Euler equations, Ann. Probab. 29, no. 4, 1796-1832 (2001). MR 1880243 (2002m:60091)
  • 12. Z. Brzezniak and J. van Neerven,
    Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise.
    J. Math. Kyoto Univ. 43, no. 2, 261-303 (2003). MR 2051026 (2005c:60077)
  • 13. H. Cartan,
    DIFFERENTIAL CALCULUS,
    Hermann, Paris, 1971. MR 0344032 (49:8772)
  • 14. L. Cattabriga,
    Su un problema al contorno relativo al sistema di equazioni di Stokes,
    Rend. Sem. Mat. Univ. Padova 31, 308-340 (1961). MR 0138894 (25:2334)
  • 15. C. Castaing and M. Valadier,
    CONVEX ANALYSIS AND MEASURABLE MULTIFUNCTIONS,
    Lecture Notes in Mathematics 580, Springer, Berlin, 1977. MR 0467310 (57:7169)
  • 16. H. Crauel,
    RANDOM PROBABILITY MEASURES ON POLISH SPACES,
    Habilitationsschrift, Bremen, 1995; Stochastics Monographs, vol. 11, Taylor & Francis, London, 2002. MR 1993844 (2004e:60005)
  • 17. H. Crauel, A. Debussche and F. Flandoli,
    Random attractor,
    Journal of Dynamics and Differential Equations 9(2), 307-341 (1997). MR 1451294 (98c:60066)
  • 18. H. Crauel and F. Flandoli,
    Attractors for random dynamical systems,
    Probability Theory and Related Fields 100, 365-393 (1994). MR 1305587 (95k:58092)
  • 19. G. Da Prato and A. Debussche,
    Two-dimensional Navier-Stokes equations driven by a space-time white noise,
    J. Funct. Anal. 196, no. 1, 180-210 (2002). MR 1941997 (2003h:35198)
  • 20. G. Da Prato and J. Zabczyk,
    STOCHASTIC EQUATIONS IN INFINITE DIMENSIONS,
    Encyclopedia of Mathematics and its Applications 44
    Cambridge University Press, Cambridge, 1992. MR 1207136 (95g:60073)
  • 21. G. Da Prato and J. Zabczyk,
    ERGODICITY FOR INFINITE DIMENSIONAL SYSTEMS,
    London Mathematical Society Lecture Note Series 229, Cambridge University Press, Cambridge, 1996. MR 1417491 (97k:60165)
  • 22. J.-P. Eckmann and M. Hairer,
    Invariant measures for stochastic partial differential equations in unbounded domains,
    Nonlinearity 14, no. 1, 133-151 (2001). MR 1808628 (2002a:60103)
  • 23. F. Flandoli, Dissipativity and invariant measures for stochastic Navier-Stokes equations with a generalised noise, NoDEA 1, 403-423 (1994). MR 1300150 (95h:35254)
  • 24. F. Flandoli and V.M. Tortorelli, Time discretization of Ornstein-Uhlenbeck equations and stochastic Navier-Stokes equations with a generalised noise, Stochastics Stochastics Rep. 55, no. 1-2, 141-165 (1995). MR 1382289 (97a:35270)
  • 25. A. Friedman,
    PARTIAL DIFFERENTIAL EQUATIONS,
    Holt, Rinehart and Winston, Inc., 1969. MR 0445088 (56:3433)
  • 26. D. Fujiwara, and H. Morimoto,
    An $ L_r$ theorem of the Helmhotz decomposition of vector fields,
    J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 685-700 (1977). MR 0492980 (58:12023)
  • 27. J.M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations, J. Differential Equations 110, no. 2, 356-359 (1994). MR 1278375 (95d:35150)
  • 28. L. Gross, Measurable functions on Hilbert space, Trans. Am. Math. Soc. 105, 372-390 (1962). MR 0147606 (26:5121)
  • 29. M. Hairer, Ergodicity of stochastic differential equations driven by fractional Brownian motion, Ann. Probab. 33 703-758 (2005). MR 2123208 (2005k:60178)
  • 30. J. G. Heywood,
    The Navier-Stokes equations: on the existence, regularity and decay of solutions,
    Indiana Univ. Math. J. 29, no. 5, 639-681 (1980). MR 0589434 (81k:35131)
  • 31. S.G. Jones,
    Stability and asymptotic fixed-point theory,
    Proc. Nat. Acad. Sci. U.S.A. 53, 1262-1264 (1965). MR 0180728 (31:4959)
  • 32. H. Keller and B. Schmalfuss,
    Attractors For Stochastic Sine Gordon Equations Via Transformation into Random Equations, preprint, the University of Bremen, 1999.
  • 33. O. Ladyzhenskaya,
    ATTRACTORS FOR SEMIGROUPS AND EVOLUTION EQUATIONS,
    Lezioni Lincee, Cambridge University Press, Cambridge, 1991. MR 1133627 (92k:58040)
  • 34. J. L. Lions and E. Magenes,
    NON-HOMOGENEOUS BOUNDARY VALUE PROBLEMS AND APPLICATIONS,
    vol. 1, Springer-Verlag, Berlin, Heidelberg, New York, 1972. MR 0350177 (50:2670)
  • 35. J.L. Lions and G. Prodi,
    Un théorème d'existence et unicité dans les équations de Navier- Stokes en dimension 2,
    C. R. Acad. Sci. Paris 248, 3519-3521 (1959). MR 0108964 (21:7676)
  • 36. A.L. Neidhardt, Stochastic Integrals in 2-uniformly smooth Banach Spaces, University of Wisconsin, 1978.
  • 37. R. Rosa,
    The global attractor for the 2D Navier-Stokes flow on some unbounded domains,
    Nonlinear Analysis 32, 71-85 (1998). MR 1491614 (98k:35152)
  • 38. J. Rougemont,
    Space-time invariant measures, entropy, and dimension for stochastic Ginzburg-Landau equations,
    Comm. Math. Phys. 225, no. 2, 423-448 (2002). MR 1889231 (2002m:37073)
  • 39. B. Schmalfuss,
    Backward cocycles and attractors of Stochastic Differential Equations",
    pp. 185-192 in INTERNATIONAL SEMINAR ON APPLIED MATHEMATICS-NONLINEAR DYNAMICS: ATTRACTOR APPROXIMATION AND GLOBAL BEHAVIOUR, eds. Reitmann, T. Riedrich and N. Koksch, 1992.
  • 40. R. Temam,
    NAVIER-STOKES EQUATIONS,
    North-Holland Publish Company, Amsterdam, 1979. MR 0603444 (82b:35133)
  • 41. R. Temam,
    INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS IN MECHANICS AND PHYSICS,
    Second Edition, Springer, New York, 1997. MR 1441312 (98b:58056)
  • 42. J. Toth and S. Zelditch,
    $ L\sp p$ norms of eigenfunctions in the completely integrable case.
    Ann. Henri Poincaré 4, no. 2, 343-368 (2003). MR 1985776 (2004g:58043)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 60H15, 35R60, 37H10, 34F05

Retrieve articles in all journals with MSC (2000): 60H15, 35R60, 37H10, 34F05


Additional Information

Zdzislaw Brzezniak
Affiliation: Department of Mathematics, The University of Hull, Hull, HU6 7RX, United Kingdom
Address at time of publication: Department of Mathematics, University of York, Heslington, York, YO10 5DD, United Kingdom
Email: zb500@york.ac.uk

Yuhong Li
Affiliation: Department of Mathematics, The University of Hull, Hull, HU6 7RX, United Kingdom
Address at time of publication: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
Email: chuchuemma@163.com

DOI: https://doi.org/10.1090/S0002-9947-06-03923-7
Keywords: Stochastic Navier-Stokes equations, unbounded domains, cylindrical white noise, asymptotic compactness, random dynamic systems, absorbing sets
Received by editor(s): June 6, 2004
Received by editor(s) in revised form: December 8, 2004
Published electronically: July 24, 2006
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society