CORRIGENDUM TO “WEST’S PROBLEM ON EQUIVARIANT HYPERSPACES AND BANACH-MAZUR COMPACTA”

SERGEY ANTONYAN

In our article [1], on p. 3389, the definition of the weak topology of the \(G \)-nerve \(\mathcal{N}(\mathcal{U}) \) contains a gap. Namely, it is claimed there that the topology on \(\mathcal{N}(\mathcal{U}) \) induced from \(\mathcal{J} \) is the weak one, which is false. The author apologizes for this mistake.

Nevertheless, in the proofs of Lemmas 4.2, 4.4 and 5.2, where the topology of \(\mathcal{N}(\mathcal{U}) \) is essential, in fact the right weak topology of \(\mathcal{N}(\mathcal{U}) \) was applied. Thus, all of the proofs given in [1] are correct and complete.

Using the notation and references adopted in [1], the above-mentioned gap in the definition of the topology of the \(G \)-nerve \(\mathcal{N}(\mathcal{U}) \) may be filled by replacing the text on p. 3389 starting in line 26 and ending in line 35, by the following.

“For every simplex \(L = \langle \mu_0, \ldots, \mu_n \rangle \subset \tilde{\mathcal{N}}(\mathcal{U}) \), set

\[
\Delta(L) = \bigcup \{ \Delta(S, F_S) \mid S \text{ is a subsimplex of } L \}.
\]

Clearly, \(\Delta(L) \) is an invariant subset of the finite join \(G/H_{\mu_0} \ast \cdots \ast G/H_{\mu_n} \). We always will consider the induced topology and \(G \)-action on \(\Delta(L) \). Observe that, if \(N \) is a subsimplex of \(L \), then \(\Delta(N) \) is a closed invariant subset of \(\Delta(L) \). Indeed, let \(\xi : G/H_{\mu_0} \ast \cdots \ast G/H_{\mu_n} \to L \) be the continuous map sending the point \(\sum_{i=0}^{n} t_{\mu_i}g_{H_{\mu_i}} \in G/H_{\mu_0} \ast \cdots \ast G/H_{\mu_n} \) to the point \(\sum_{i=0}^{n} t_{\mu_i} \mu_i \in L \). Since \(P_{L, N}(F_L) \subset F_N \), where \(P_{L, N} : \prod_{\mu \in L} G/H_{\mu} \to \prod_{\mu \in N} G/H_{\mu} \) is the Cartesian projection, we see that the preimage \(\xi^{-1}(N) \) is just \(\Delta(N) \). Since \(N \) is closed in \(L \), this yields that \(\Delta(N) \) is closed in \(\Delta(L) \), as required. Invariance of \(\Delta(N) \) is evident.

It is clear that, if \(K \subset \tilde{\mathcal{N}}(\mathcal{U}) \) is yet another simplex, then \(\Delta(L) \cap \Delta(K) = \Delta(L \cap K) \). Consequently, \(\Delta(L) \cap \Delta(K) \) is closed in both \(\Delta(L) \) and \(\Delta(K) \).

Consider the following invariant subset of \(\mathcal{J} \):

\[
\mathcal{N}(\mathcal{U}) = \bigcup \{ \Delta(L) \mid L \in \tilde{\mathcal{N}}(\mathcal{U}) \}.
\]

We consider the weak topology on \(\mathcal{N}(\mathcal{U}) \) determined by the family

\[
\{ \Delta(L) \mid L \in \tilde{\mathcal{N}}(\mathcal{U}) \}.
\]

Namely, a set \(U \subset \mathcal{N}(\mathcal{U}) \) is, by definition, open in \(\mathcal{N}(\mathcal{U}) \) if and only if \(U \cap \Delta(L) \) is open in \(\Delta(L) \) for every simplex \(L \subset \tilde{\mathcal{N}}(\mathcal{U}) \).

Received by the editors October 13, 2004 and, in revised form, November 1, 2005.

2000 Mathematics Subject Classification. Primary 57N20, 57S10, 54B20, 54C55, 55P91, 46B99.

Key words and phrases. \(G \)-nerve, weak topology.
The G-action on $\mathcal{N}(U)$, defined by the following formula, makes $\mathcal{N}(U)$ a G-space, called the G-nerve of U:

$$g \ast \left(\sum_{\mu \in M} t_{\mu}g_{\mu}^tH_{\mu} \right) = \sum_{\mu \in M} t_{\mu}gg_{\mu}H_{\mu}, \quad g \in G.$$

Since the intersection $\Delta(L) \cap \Delta(K)$ is closed in both $\Delta(L)$ and $\Delta(K)$, we see that each space $\Delta(L)$ retains its original topology and is a closed invariant subset of $\mathcal{N}(U)$ (see, e.g., [2] Ch. VI, §8). We call $\Delta(L)$ a G-n-simplex over the n-simplex L.

In the proofs of Lemmas 4.4 and 5.2 the following well-known and easily proved property of the weak topology is used: a map $f : \mathcal{N}(U) \to Z$ is continuous if and only if each restriction $f_{|_{\Delta(L)}}$ is continuous."

As is defined on page 3389, lines 9–10, the elements of a G-normal cover U are tubular slice-sets gS_μ with companion groups H_μ. However, in order to emphasize the role of H_μ, we have used the denotation (gS_μ, H_μ) instead of gS_μ, which in some occasions may cause confusion. Thus, in Lemmas 4.1, 4.2 and 5.2 the denotation $U = \{(gS_\mu, H_\mu) \mid g \in G, \mu \in M\}$ should be replaced by $U = \{gS_\mu \mid g \in G, \mu \in M\}$, where S_μ is an H_μ-slice.

For the proof of Lemma 5.2 it is important to formulate Lemma 4.1 in the following more precise form.

Lemma 4.1. Let X be a paracompact G-space and \mathcal{V} an open cover of X. Then X admits a G-normal cover $U = \{gS_\lambda \mid g \in G, \lambda \in \Lambda\}$ with the companion groups $\{H_\lambda\}_{\lambda \in \Lambda}$ such that each H_λ is the stabilizer of a point $x_\lambda \in S_\lambda$ and U is a star-refinement of \mathcal{V}.

In Lemma 5.2 under the term “ε-cover” we mean the family of all open balls in $L_0(n)$ which have radius ε.

In the formulation and in the proof of Lemma 5.2, always $G = O(n)$.

Also, one should correct the following misprints:

1. page 3389, line 14: “$O \in U_1$” should be “$O \in U_1$”.
2. page 3389, line 20: “of U” should be “of \mathcal{U}”.
3. page 3390, line 27: “(gS_x, G_x)” should be “gS_x”.
4. page 3390, line 30: “an open G-normal cover” should be “a G-normal cover”.
5. page 3391, line 28: “$\Delta(L, F_L)$” should be “$\Delta(L)$”.
6. page 3392, line 2: “$R(x) \in F_{3n-1}(s)$” should be “$R(x) \in F_{3n-1}(s^1)$, where s^1 is the 1-dimensional skeleton of s”.
7. page 3392, line 7: “$\Delta(L, F_L)$” should be “$\Delta(L)$”.
8. page 3392, line 13: “$F_{3n-1}(s)$” should be “$F_{3n-1}(s^1)$”.
9. page 3394, line 30: “$q'(g_1A_\lambda) = q'(g_0A_\lambda)$” should be “$q'(g_1H_\mu) = q''(g_0H_\lambda)$”.
10. page 3394, line 36: “of $g_0A_\lambda \cup g_1A_\mu$”.
11. page 3394, line 41: “of g_1A_μ” should be “of $g_0A_\lambda \cup g_1A_\mu$”.
12. page 3398, line 22: “domain. Since” should be “domain V. Since”.
References

Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F. 04510, México

E-mail address: antonyan@servidor.unam.mx