Hessian nilpotent polynomials and the Jacobian conjecture
Author:
Wenhua Zhao
Journal:
Trans. Amer. Math. Soc. 359 (2007), 249274
MSC (2000):
Primary 33C55, 39B32, 14R15, 31B05
Published electronically:
July 20, 2006
MathSciNet review:
2247890
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let and let be the Laplace operator. The main goal of the paper is to show that the wellknown Jacobian conjecture without any additional conditions is equivalent to what we call the vanishing conjecture: for any homogeneous polynomial of degree , if for all , then when , or equivalently, when . It is also shown in this paper that the condition () above is equivalent to the condition that is Hessian nilpotent, i.e. the Hessian matrix is nilpotent. The goal is achieved by using the recent breakthrough work of M. de Bondt, A. van den Essen and various results obtained in this paper on Hessian nilpotent polynomials. Some further results on Hessian nilpotent polynomials and the vanishing conjecture above are also derived.
 [Ar]
V.
I. Arnold, Mathematical methods of classical mechanics,
SpringerVerlag, New YorkHeidelberg, 1978. Translated from the Russian by
K. Vogtmann and A. Weinstein; Graduate Texts in Mathematics, 60. MR 0690288
(57 #14033b)
 [ABR]
Sheldon
Axler, Paul
Bourdon, and Wade
Ramey, Harmonic function theory, 2nd ed., Graduate Texts in
Mathematics, vol. 137, SpringerVerlag, New York, 2001. MR 1805196
(2001j:31001)
 [BCW]
Hyman
Bass, Edwin
H. Connell, and David
Wright, The Jacobian conjecture: reduction of
degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 287–330. MR 663785
(83k:14028), http://dx.doi.org/10.1090/S027309791982150327
 [BE1]
Michiel
de Bondt and Arno
van den Essen, A reduction of the Jacobian conjecture
to the symmetric case, Proc. Amer. Math.
Soc. 133 (2005), no. 8, 2201–2205 (electronic). MR 2138860
(2006a:14107), http://dx.doi.org/10.1090/S0002993905075702
 [BE2]
Michiel
de Bondt and Arno
van den Essen, Nilpotent symmetric Jacobian matrices and the
Jacobian conjecture, J. Pure Appl. Algebra 193
(2004), no. 13, 61–70. MR 2076378
(2005c:14087), http://dx.doi.org/10.1016/j.jpaa.2004.03.003
 [BE3]
Michiel
de Bondt and Arno
van den Essen, Singular Hessians, J. Algebra
282 (2004), no. 1, 195–204. MR 2095579
(2005i:13031), http://dx.doi.org/10.1016/j.jalgebra.2004.08.026
 [BE4]
Michiel
de Bondt and Arno
van den Essen, Nilpotent symmetric Jacobian matrices and the
Jacobian conjecture. II, J. Pure Appl. Algebra 196
(2005), no. 23, 135–148. MR 2110519
(2005k:14130), http://dx.doi.org/10.1016/j.jpaa.2004.08.030
 [BE5]
M. de Bondt and A. van den Essen, Hesse and the Jacobian Conjecture, Report No. 0321, University of Nijmegen, December, 2003.
 [E]
Arno
van den Essen, Polynomial automorphisms and the Jacobian
conjecture, Progress in Mathematics, vol. 190, Birkhäuser
Verlag, Basel, 2000. MR 1790619
(2001j:14082)
 [EW]
Arno
van den Essen and Sherwood
Washburn, The Jacobian conjecture for symmetric Jacobian
matrices, J. Pure Appl. Algebra 189 (2004),
no. 13, 123–133. MR 2038568
(2004m:14133), http://dx.doi.org/10.1016/j.jpaa.2003.10.020
 [H]
Henryk
Iwaniec, Topics in classical automorphic forms, Graduate
Studies in Mathematics, vol. 17, American Mathematical Society,
Providence, RI, 1997. MR 1474964
(98e:11051)
 [Ke]
O. H. Keller, Ganze GremonaTransformation, Monats. Math. Physik 47 (1939), 299306.
 [KR]
V.
G. Kac and A.
K. Raina, Bombay lectures on highest weight representations of
infinitedimensional Lie algebras, Advanced Series in Mathematical
Physics, vol. 2, World Scientific Publishing Co., Inc., Teaneck, NJ,
1987. MR
1021978 (90k:17013)
 [M]
G. Meng, Legendre Transform, Hessian Conjecture and Tree Formula, mathph/0308035.
 [R]
Jeffrey
Rauch, Partial differential equations, Graduate Texts in
Mathematics, vol. 128, SpringerVerlag, New York, 1991. MR 1223093
(94e:35002)
 [S]
Steve
Smale, Mathematical problems for the next century, Math.
Intelligencer 20 (1998), no. 2, 7–15. MR 1631413
(99h:01033), http://dx.doi.org/10.1007/BF03025291
 [T]
Masaru
Takeuchi, Modern spherical functions, Translations of
Mathematical Monographs, vol. 135, American Mathematical Society,
Providence, RI, 1994. Translated from the 1975 Japanese original by
Toshinobu Nagura. MR 1280269
(96d:22009)
 [Wa]
Stuart
Sui Sheng Wang, A Jacobian criterion for separability, J.
Algebra 65 (1980), no. 2, 453–494. MR 585736
(83e:14010), http://dx.doi.org/10.1016/00218693(80)902331
 [Wr1]
D. Wright, Ideal Membership Questions Relating to the Jacobian Conjecture. To appear.
 [Wr2]
D. Wright, The Jacobian Conjecture: Ideal Membership Questions and Recent Advances, To appear.
 [Wr3]
D. Wright, Personal communications.
 [Y]
A.
V. Jagžev, On a problem of O.H. Keller, Sibirsk. Mat.
Zh. 21 (1980), no. 5, 141–150, 191 (Russian).
MR 592226
(82e:14020)
 [Z1]
W. Zhao, Recurrent Inversion Formulas, math. CV/0305162.
 [Z2]
Wenhua
Zhao, Inversion problem, Legendre transform and inviscid
Burgers’ equations, J. Pure Appl. Algebra 199
(2005), no. 13, 299–317. MR 2134306
(2006b:14109), http://dx.doi.org/10.1016/j.jpaa.2004.12.026
 [Z3]
W. Zhao, Some Properties and Open Problems of Hessian Nilpotent polynomials, In preparation.
 [Ar]
 V. I. Arnold, Mathematical Methods of Classical Mechanics, SpringerVerlag New York, 1978. MR 0690288 (57:14033b)
 [ABR]
 S. Axler, P. Bourdon and W. Ramey, Harmonic function theory. Second edition. Graduate Texts in Mathematics, 137. SpringerVerlag, New York, 2001. MR 1805196 (2001j:31001)
 [BCW]
 H. Bass, E. Connell and D. Wright, The Jacobian conjecture, reduction of degree and formal expansion of the inverse. Bull. Amer. Math. Soc. 7 (1982), 287330. MR 0663785 (83k:14028)
 [BE1]
 M. de Bondt and A. van den Essen, A Reduction of the Jacobian Conjecture to the Symmetric Case, Report No. 0308, University of Nijmegen, June, 2003. Proc. of the AMS. 133 (2005), no. 8, 22012205 MR 2138860 (2006a:14107)
 [BE2]
 M. de Bondt and A. van den Essen, Nilpotent Symmetric Jacobian Matrices and the Jacobian Conjecture, Report No. 0307, University of Nijmegen, June, 2003. J. Pure and Appl. Alg. 193 (2004), no. 13, 6170. MR 2076378 (2005c:14087)
 [BE3]
 M. de Bondt and A. van den Essen, Singular Hessians, Report No. 0317, University of Nijmegen, October, 2003. J. Algebra 282 (2004), no. 1, 195204 MR 2095579 (2005i:13031)
 [BE4]
 M. de Bondt and A. van den Essen, Nilpotent Symmetric Jacobian Matrices and the Jacobian Conjecture II, Report No. 0318, University of Nijmegen, November, 2003. J. Pure and Appl. Alg. 196 (2005), no. 23, 135148. MR 2110519 (2005k:14130)
 [BE5]
 M. de Bondt and A. van den Essen, Hesse and the Jacobian Conjecture, Report No. 0321, University of Nijmegen, December, 2003.
 [E]
 A. van den Essen, Polynomial automorphisms and the Jacobian conjecture. Progress in Mathematics, 190. Birkhäuser Verlag, Basel, 2000. MR 1790619 (2001j:14082)
 [EW]
 A. van den Essen and S. Washburn, The Jacobian conjecture for symmetric Jacobian matrices, J. Pure Appl. Algebra 189 (2004), no. 13, 123133. MR 2038568 (2004m:14133)
 [H]
 H. Henryk, Topics in classical automorphic forms, Graduate Studies in Mathematics, 17. American Mathematical Society, Providence, RI, 1997. [MR1474964]. MR 1474964 (98e:11051)
 [Ke]
 O. H. Keller, Ganze GremonaTransformation, Monats. Math. Physik 47 (1939), 299306.
 [KR]
 V. Kac and A. K. Raina, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, Advanced Series in Mathematical Physics, 2. World Scientific Publishing Co., Inc., Teaneck, NJ, 1987. MR 1021978 (90k:17013)
 [M]
 G. Meng, Legendre Transform, Hessian Conjecture and Tree Formula, mathph/0308035.
 [R]
 J. Rauch, Partial Differential Equations, SpringerVerlag, New York, 1991. MR 1223093 (94e:35002)
 [S]
 S. Smale, Mathematical Problems for the Next Century, Math. Intelligencer 20, No. 2, 715, 1998. MR 1631413 (99h:01033).
 [T]
 M. Takeuchi, Modern spherical functions, Translations of Mathematical Monographs, 135. American Mathematical Society, Providence, RI, 1994. MR 1280269 (96d:22009)
 [Wa]
 S. Wang, A Jacobian criterion for separability, J. Algebra 65 (1980), 453494. MR 0585736 (83e:14010)
 [Wr1]
 D. Wright, Ideal Membership Questions Relating to the Jacobian Conjecture. To appear.
 [Wr2]
 D. Wright, The Jacobian Conjecture: Ideal Membership Questions and Recent Advances, To appear.
 [Wr3]
 D. Wright, Personal communications.
 [Y]
 A. V. Jagzev, On a problem of O.H. Keller. (Russian) Sibirsk. Mat. Zh. 21 (1980), no. 5, 141150, 191. MR 0592226 (82e:14020)
 [Z1]
 W. Zhao, Recurrent Inversion Formulas, math. CV/0305162.
 [Z2]
 W. Zhao, Inversion Problem, Legendre Transform and the Inviscid Burgers' Equation, J. Pure Appl. Algebra 199 (2005), no.13, 299317. MR 2134306 (2006b:14109)
 [Z3]
 W. Zhao, Some Properties and Open Problems of Hessian Nilpotent polynomials, In preparation.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
33C55,
39B32,
14R15,
31B05
Retrieve articles in all journals
with MSC (2000):
33C55,
39B32,
14R15,
31B05
Additional Information
Wenhua Zhao
Affiliation:
Department of Mathematics, Illinois State University, Normal, Illinois 617904520
Email:
wzhao@ilstu.edu
DOI:
http://dx.doi.org/10.1090/S0002994706038980
PII:
S 00029947(06)038980
Keywords:
Hessian nilpotent polynomials,
deformed inversion pairs,
the heat equation,
harmonic polynomials,
the Jacobian conjecture.
Received by editor(s):
October 15, 2004
Received by editor(s) in revised form:
October 26, 2004
Published electronically:
July 20, 2006
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
