Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Lefschetz property, formality and blowing up in symplectic geometry


Author: Gil Ramos Cavalcanti
Journal: Trans. Amer. Math. Soc. 359 (2007), 333-348
MSC (2000): Primary 53D35; Secondary 57R19
DOI: https://doi.org/10.1090/S0002-9947-06-04058-X
Published electronically: August 15, 2006
MathSciNet review: 2247894
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the behaviour of the Lefschetz property under the blow-up construction. We show that it is possible to reduce the dimension of the kernel of the Lefschetz map if we blow up along a suitable submanifold satisfying the Lefschetz property. We use this, together with results about Massey products, to construct compact nonformal symplectic manifolds satisfying the Lefschetz property.


References [Enhancements On Off] (What's this?)

  • 1. I. K. Babenko and I. A.. Taimanov, Massey products in symplectic manifolds, Sb. Math. 191 (2000), 1107-1146. MR 1786415 (2002d:53116)
  • 2. -, On nonformal simply connected symplectic manifolds, Siberian Math. J. 41 (2000), 204-217. MR 1762178 (2001g:57051)
  • 3. C. Benson and C. S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518. MR 0976592 (90b:53042)
  • 4. J. Brylinski, A differential complex for Poisson manifolds, J. Differential Geometry 28 (1988), 93-114. MR 0950556 (89m:58006)
  • 5. G. R. Cavalcanti, New aspects of the $ dd^c$-lemma, Ph.D. thesis, Oxford University, 2004, math.DG/0501406.
  • 6. L. Cordero, M. Fernández, and A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986), 375-380. MR 0842431 (87j:53051)
  • 7. P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274.MR 0382702 (52:3584)
  • 8. S. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geometry 44 (1996), 666-705. MR 1438190 (98h:53045)
  • 9. M. Fernández and V. Muñoz, Formality of Donaldson submanifolds, Math. Z. 250 (2005), 149-175.MR 2136647 (2006a:53098)
  • 10. R. E. Gompf, A new construction of symplectic manifolds, Ann. of Math. (2) 142 (1995), 527-595.MR 1356781 (96j:57025)
  • 11. M. Gromov, A topological technique for the construction of differential equations and inequalities, Actes Congr. Internat. Math. (Nice 1970), vol. 2, 1971, pp. 221-225.MR 0420697 (54:8709)
  • 12. M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Oxford University, 2003, math.DG/0401221.
  • 13. N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford 54 (2003), 281-308.MR 2013140 (2004h:32024)
  • 14. R. Ibáñez, Y. Rudyak, A. Tralle, and L. Ugarte, On certain geometric and homotopy properties of closed symplectic manifolds, Proceedings of the Pacific Institute for the Mathematical Sciences Workshop ``Invariants of Three-Manifolds'' (Calgary, AB, 1999), vol. 127, 2003, pp. 33-45. MR 1953319 (2003j:53139)
  • 15. J. L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Elie Cartan et les meth. d'aujourd'hui, Astérisque hors-série, 1985, pp. 251-271.MR 0837203 (88m:17013)
  • 16. G. Lupton and J Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), 193-207.MR 1255930 (95d:55010)
  • 17. O. Mathieu, Harmonic cohomology classes of symplectic manifolds, Comment. Math. Helv. 70 (1990), 1-9.MR 1314938 (96e:58004)
  • 18. D. McDuff, Examples of simply-connected symplectic non-Kählerian manifolds, J. Differential Geometry 20 (1984), 267-277. MR 0772133 (86c:57036)
  • 19. D. McDuff and D. Salamon, Introduction to symplectic topology, Oxford Mathematical Monographs, Oxford University Press, 1995. MR 1373431 (97b:58062)
  • 20. S. A. Merkulov, Formality of canonical symplectic complexes and Frobenius manifolds, Internat. Math. Res. Notices 14 (1998), 727-733.MR 1637093 (99j:58078)
  • 21. T. J. Miller, On the formality of $ k-1$ connected compact manifolds of dimension less than or equal to $ 4k-2$, Illinois J. Math. 23 (1979), 253-258.MR 0528561 (80j:55017)
  • 22. K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. (2) 59 (1954), 531-538. MR 0064057 (16:219c)
  • 23. A. N. Parshin, A generalization of the Jacobian variety (Russian), Isvestia 30 (1966), 175-182.MR 0196770 (33:4956)
  • 24. Y. Rudyak and A. Tralle, On Thom spaces, Massey products and non-formal symplectic manifolds, Internat. Math. Res. Notices 10 (2000), 495-513.MR 1759504 (2001h:53128)
  • 25. D. Tischler, Closed 2-forms and an embedding theorem for manifolds, J. Differential Geometry 12 (1977), 229-235. MR 0488108 (58:7677)
  • 26. D. Yan, Hodge structure on symplectic manifolds, Adv. in Math. 120 (1996), 143-154.MR 1392276 (97e:58004)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53D35, 57R19

Retrieve articles in all journals with MSC (2000): 53D35, 57R19


Additional Information

Gil Ramos Cavalcanti
Affiliation: Mathematical Institute, University of Oxford, St. Giles 24-29, Oxford, OX1 3BN, United Kingdom
Email: gilrc@maths.ox.ac.uk

DOI: https://doi.org/10.1090/S0002-9947-06-04058-X
Keywords: Strong Lefschetz property, symplectic blow-up, Massey products
Received by editor(s): November 14, 2004
Published electronically: August 15, 2006
Additional Notes: This research was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Ministério da Educação e Cultura), Brazilian Government, Grant 1326/99-6
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society