Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The rack space

Authors: Roger Fenn, Colin Rourke and Brian Sanderson
Journal: Trans. Amer. Math. Soc. 359 (2007), 701-740
MSC (2000): Primary 55Q40, 57M25; Secondary 57Q45, 57R15, 57R20, 57R40
Published electronically: August 24, 2006
MathSciNet review: 2255194
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main result of this paper is a new classification theorem for links (smooth embeddings in codimension 2). The classifying space is the rack space and the classifying bundle is the first James bundle.

We investigate the algebraic topology of this classifying space and report on calculations given elsewhere. Apart from defining many new knot and link invariants (including generalised James-Hopf invariants), the classification theorem has some unexpected applications. We give a combinatorial interpretation for $ \pi_2$ of a complex which can be used for calculations and some new interpretations of the higher homotopy groups of the 3-sphere. We also give a cobordism classification of virtual links.

References [Enhancements On Off] (What's this?)

  • 1. S. Buoncristiano, C. Rourke, and B. Sanderson, A geometric approach to homology theory, London Math. Soc. Lecture Notes Series 18, C.U.P. (1976). MR 0413113 (54:1234)
  • 2. J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, and M. Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355 (2003), 3947-3989. MR 1990571 (2005b:57048)
  • 3. J. S. Carter, S. Kamada, and M. Saito, Stable equivalences of knots on surfaces and virtual knot cobordisms, J. Knot Theory Ramifications 11 (2002), 311-322. MR 1905687 (2003f:57011)
  • 4. J. Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math. France 98 (1961), 227-382. MR 0140120 (25:3543)
  • 5. A. Douady, Variétés à bord anguleux et voisinages tubulaires, Séminaire Henri Cartan, no. 1 (1961-1962). MR 0160221 (28:3435)
  • 6. R. Fenn, Techniques of Geometric Topology, London Math. Soc. Lecture Note Series, no. 57, C.U.P. (1983). MR 0787801 (87a:57002)
  • 7. R. Fenn, M. Jordan, L. H. Kauffman, Biracks and virtual links, to appear in Topology Appl. available from:
  • 8. R. Fenn and C. Rourke, Racks and links in codimension two, J. Knot Theory Ramifications 1 (1992), 343-406. MR 1194995 (94e:57006)
  • 9. R. Fenn, C. Rourke, and B. Sanderson, An introduction to species and the rack space, Topics in Knot Theory (Erzurum, 1992), (M. E. Bozhüyük, editor), NATO Adv. Sci. Inst. Ser. C Math. Phys Sci. 399, Kluwer Academic Publishers, 1993, 33-55. MR 1257904
  • 10. R. Fenn, C. Rourke, and B. Sanderson, Trunks and classifying spaces, Applied Categorical Structures 3 (1995), 321-356. MR 1364012 (96i:57023)
  • 11. R. Fenn, C. Rourke, and B. Sanderson, James bundles and applications, preprint (1996).
  • 12. R. Fenn, C. Rourke, and B. Sanderson, James bundles, Proc. London Math. Soc. 89 (2004), 217-240. MR 2063665 (2005d:55006)
  • 13. R. Fenn, C. Rourke, and B. Sanderson, A classification of classical links, in preparation.
  • 14. J. Flower, Cyclic bordism and rack spaces, Ph.D. Thesis, Warwick, 1995.
  • 15. M. Greene, Some results in geometric topology and geometry, Ph.D. Thesis, Warwick, 1996, available from:
  • 16. M. Gromov, Partial differential relations, Ergebnisse series (3) 9, Springer-Verlag, 1986. MR 0864505 (90a:58201)
  • 17. P. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154-172. MR 0068218 (16:847d)
  • 18. N. Kamada and S. Kamada, Abstract link diagrams and virtual knots, J. Knot Theory Ramifications 9 (2000), 93-106. MR 1749502 (2001h:57007)
  • 19. L. H. Kauffman, Virtual knot theory, Euro. J. Combin. 7 (1999), 663-690. MR 1721925 (2000i:57011)
  • 20. U. Koschorke and B. Sanderson, Self-intersections and higher Hopf invariants, Topology 17 (1978), 283-290. MR 0508891 (81i:55014)
  • 21. G. Kuperberg, What is a virtual link? Algebr. Geom. Topol. 3 (2003), 587-591. MR 1997331 (2004f:57012)
  • 22. R. Lashof and S. Smale, Self-intersections of immersed manifolds, J. Math. Mech. 8 (1959), 143-157. MR 0101522 (21:332)
  • 23. R. A. Litherland and S. Nelson, The Betti numbers of some finite racks, J. Pure Appl. Algebra 178 (2003), 187-202. MR 1952425 (2004a:57006)
  • 24. J. G. Pastor, Bundle complexes and bordism of immersions, Ph.D. Thesis, University of Warwick, 1982.
  • 25. C. Rourke and B. Sanderson, Introduction to piecewise-linear topology (Reprint), Springer Study Edition, Springer-Verlag, 1982. MR 0665919 (83g:57009)
  • 26. C. Rourke and B. Sanderson, The compression theorem. I and II, Geom. Topol. 5 (2001), 399-429, 431-440. MR 1833749 (2002d:57022a); MR 1833750 (2002d:57022b)
  • 27. C. Rourke and B. Sanderson, There are two $ 2$-twist spun trefoils, arxiv:math.GT/0006062:v1
  • 28. B. Sanderson, The geometry of Mahowald orientations, Algebraic Topology (Aarhus, 1978), Lecture Notes in Mathematics, 763, Springer, 1978. MR 0561221 (81c:57039)
  • 29. B. Sanderson, Bordism of links in codimension $ 2$, J. London Math. Soc. 35 (1987), 367-376. MR 0881524 (88d:57023)
  • 30. J. C. H. Whitehead, On adding relations to homotopy groups, Ann. of Math. 42 (1941), 409-428. MR 0004123 (2,323c)
  • 31. B. Wiest, Rack spaces and loop spaces, J. Knot Theory Ramifications 8 (1999), 99-114. MR 1673890 (2000j:57017)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 55Q40, 57M25, 57Q45, 57R15, 57R20, 57R40

Retrieve articles in all journals with MSC (2000): 55Q40, 57M25, 57Q45, 57R15, 57R20, 57R40

Additional Information

Roger Fenn
Affiliation: Department of Mathematics, University of Sussex, Falmer, Brighton, BN1 9QH, United Kingdom

Colin Rourke
Affiliation: Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom

Brian Sanderson
Affiliation: Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom

Keywords: Classifying space, codimension 2, cubical set, James bundle, link, knot, $\pi_2$, rack
Received by editor(s): August 1, 2003
Received by editor(s) in revised form: November 24, 2004
Published electronically: August 24, 2006
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society