Square -lattice paths and

Authors:
Nicholas A. Loehr and Gregory S. Warrington

Journal:
Trans. Amer. Math. Soc. **359** (2007), 649-669

MSC (2000):
Primary 05E10; Secondary 05A30, 20C30

Published electronically:
August 16, 2006

MathSciNet review:
2255191

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The *combinatorial -Catalan numbers* are weighted sums of Dyck paths introduced by J. Haglund and studied extensively by Haglund, Haiman, Garsia, Loehr, and others. The -Catalan numbers, besides having many subtle combinatorial properties, are intimately connected to symmetric functions, algebraic geometry, and Macdonald polynomials. In particular, the 'th -Catalan number is the Hilbert series for the module of diagonal harmonic alternants in variables; it is also the coefficient of in the Schur expansion of . Using -analogues of labelled Dyck paths, Haglund et al. have proposed combinatorial conjectures for the monomial expansion of and the Hilbert series of the diagonal harmonics modules.

This article extends the combinatorial constructions of Haglund et al. to the case of lattice paths contained in squares. We define and study several -analogues of these lattice paths, proving combinatorial facts that closely parallel corresponding results for the -Catalan polynomials. We also conjecture an interpretation of our combinatorial polynomials in terms of the nabla operator. In particular, we conjecture combinatorial formulas for the monomial expansion of , the ``Hilbert series'' , and the sign character .

**1.**F. Bergeron and A. M. Garsia,*Science fiction and Macdonald’s polynomials*, Algebraic methods and 𝑞-special functions (Montréal, QC, 1996), CRM Proc. Lecture Notes, vol. 22, Amer. Math. Soc., Providence, RI, 1999, pp. 1–52. MR**1726826****2.**François Bergeron, Nantel Bergeron, Adriano M. Garsia, Mark Haiman, and Glenn Tesler,*Lattice diagram polynomials and extended Pieri rules*, Adv. Math.**142**(1999), no. 2, 244–334. MR**1680202**, 10.1006/aima.1998.1791**3.**F. Bergeron, A. M. Garsia, M. Haiman, and G. Tesler,*Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions*, Methods Appl. Anal.**6**(1999), no. 3, 363–420. Dedicated to Richard A. Askey on the occasion of his 65th birthday, Part III. MR**1803316**, 10.4310/MAA.1999.v6.n3.a7**4.**E. S. Egge, J. Haglund, K. Killpatrick, and D. Kremer,*A Schröder generalization of Haglund’s statistic on Catalan paths*, Electron. J. Combin.**10**(2003), Research Paper 16, 21. MR**1975766****5.**A. M. Garsia and J. Haglund,*A proof of the 𝑞,𝑡-Catalan positivity conjecture*, Discrete Math.**256**(2002), no. 3, 677–717. LaCIM 2000 Conference on Combinatorics, Computer Science and Applications (Montreal, QC). MR**1935784**, 10.1016/S0012-365X(02)00343-6**6.**A. M. Garsia and J. Haglund,*A positivity result in the theory of Macdonald polynomials*, Proc. Natl. Acad. Sci. USA**98**(2001), no. 8, 4313–4316. MR**1819133**, 10.1073/pnas.071043398**7.**A. M. Garsia and M. Haiman,*A remarkable 𝑞,𝑡-Catalan sequence and 𝑞-Lagrange inversion*, J. Algebraic Combin.**5**(1996), no. 3, 191–244. MR**1394305**, 10.1023/A:1022476211638**8.**J. Haglund,*Conjectured statistics for the 𝑞,𝑡-Catalan numbers*, Adv. Math.**175**(2003), no. 2, 319–334. MR**1972636**, 10.1016/S0001-8708(02)00061-0**9.**J. Haglund,*A proof of the 𝑞,𝑡-Schröder conjecture*, Int. Math. Res. Not.**11**(2004), 525–560. MR**2038776**, 10.1155/S1073792804132509**10.**J. Haglund,*A combinatorial model for the Macdonald polynomials*, Proc. Natl. Acad. Sci. USA**101**(2004), no. 46, 16127–16131. MR**2114585**, 10.1073/pnas.0405567101**11.**J. Haglund,*The -Catalan Numbers and the Space of Diagonal Harmonics*, AMS University Lecture Series, to appear.**12.**J. Haglund, M. Haiman, and N. Loehr,*A combinatorial formula for Macdonald polynomials*, J. Amer. Math. Soc.**18**(2005), no. 3, 735–761. MR**2138143**, 10.1090/S0894-0347-05-00485-6**13.**J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov,*A combinatorial formula for the character of the diagonal coinvariants*, Duke Math. J.**126**(2005), no. 2, 195–232. MR**2115257**, 10.1215/S0012-7094-04-12621-1**14.**J. Haglund and N. Loehr,*A conjectured combinatorial formula for the Hilbert series for diagonal harmonics*, Discrete Math.**298**(2005), no. 1-3, 189–204. MR**2163448**, 10.1016/j.disc.2004.01.022**15.**Mark Haiman,*Notes on Macdonald polynomials and the geometry of Hilbert schemes*, Symmetric functions 2001: surveys of developments and perspectives, NATO Sci. Ser. II Math. Phys. Chem., vol. 74, Kluwer Acad. Publ., Dordrecht, 2002, pp. 1–64. MR**2059359**, 10.1007/978-94-010-0524-1_1**16.**Mark Haiman,*Combinatorics, symmetric functions, and Hilbert schemes*, Current developments in mathematics, 2002, Int. Press, Somerville, MA, 2003, pp. 39–111. MR**2051783****17.**Mark Haiman,*Hilbert schemes, polygraphs and the Macdonald positivity conjecture*, J. Amer. Math. Soc.**14**(2001), no. 4, 941–1006 (electronic). MR**1839919**, 10.1090/S0894-0347-01-00373-3**18.**Mark Haiman,*Vanishing theorems and character formulas for the Hilbert scheme of points in the plane*, Invent. Math.**149**(2002), no. 2, 371–407. MR**1918676**, 10.1007/s002220200219**19.**N. Loehr, Multivariate Analogues of Catalan Numbers, Parking Functions, and their Extensions. Ph.D. thesis, University of California at San Diego, June 2003.**20.**N. Loehr,*Trapezoidal lattice paths and multivariate analogues*, Adv. in Appl. Math.**31**(2003), no. 4, 597–629. MR**2008039**, 10.1016/S0196-8858(03)00028-9**21.**Nicholas A. Loehr,*Combinatorics of 𝑞, 𝑡-parking functions*, Adv. in Appl. Math.**34**(2005), no. 2, 408–425. MR**2110560**, 10.1016/j.aam.2004.08.002**22.**Nicholas A. Loehr,*Conjectured statistics for the higher 𝑞,𝑡-Catalan sequences*, Electron. J. Combin.**12**(2005), Research Paper 9, 54. MR**2134172****23.**Nicholas A. Loehr and Jeffrey B. Remmel,*Conjectured combinatorial models for the Hilbert series of generalized diagonal harmonics modules*, Electron. J. Combin.**11**(2004), no. 1, Research Paper 68, 64. MR**2097334****24.**N. Loehr,*The major index specialization of the -Catalan,*to appear in Ars Combinatoria.**25.**I. G. Macdonald,*Symmetric functions and Hall polynomials*, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR**1354144****26.**Bruce E. Sagan,*The symmetric group*, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1991. Representations, combinatorial algorithms, and symmetric functions. MR**1093239**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
05E10,
05A30,
20C30

Retrieve articles in all journals with MSC (2000): 05E10, 05A30, 20C30

Additional Information

**Nicholas A. Loehr**

Affiliation:
Department of Mathematics, College of William & Mary, Williamsburg, Virginia 23187

Email:
nick@math.wm.edu

**Gregory S. Warrington**

Affiliation:
Department of Mathematics, Wake Forest University, Winston-Salem, North Carolina 27109

Email:
warrings@wfu.edu

DOI:
https://doi.org/10.1090/S0002-9947-06-04044-X

Keywords:
Lattice paths,
Catalan numbers,
Dyck paths,
diagonal harmonics,
nabla operator,
Macdonald polynomials

Received by editor(s):
November 19, 2004

Published electronically:
August 16, 2006

Additional Notes:
Both authors’ research was supported by NSF Postdoctoral Research Fellowships.

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.