A monoidal approach to splitting morphisms of bialgebras

Authors:
A. Ardizzoni, C. Menini and D. Stefan

Journal:
Trans. Amer. Math. Soc. **359** (2007), 991-1044

MSC (2000):
Primary 16W30; Secondary 16S40

DOI:
https://doi.org/10.1090/S0002-9947-06-03902-X

Published electronically:
October 17, 2006

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main goal of this paper is to investigate the structure of Hopf algebras with the property that either its Jacobson radical is a Hopf ideal or its coradical is a subalgebra. Let us consider a Hopf algebra such that its Jacobson radical is a nilpotent Hopf ideal and is a semisimple algebra. We prove that the canonical projection of on has a section which is an -colinear algebra map. Furthermore, if is cosemisimple too, then we can choose this section to be an -bicolinear algebra morphism. This fact allows us to describe as a `generalized bosonization' of a certain algebra in the category of Yetter-Drinfeld modules over . As an application we give a categorical proof of Radford's result about Hopf algebras with projections. We also consider the dual situation. Let be a bialgebra such that its coradical is a Hopf sub-bialgebra with antipode. Then there is a retraction of the canonical injection of into which is an -linear coalgebra morphism. Furthermore, if is semisimple too, then we can choose this retraction to be an -bilinear coalgebra morphism. Then, also in this case, we can describe as a `generalized bosonization' of a certain coalgebra in the category of Yetter-Drinfeld modules over .

**[AD]**N. Andruskiewitsch, J. Devoto,*Extensions of Hopf algebras*, Algebra i Analiz**7**(1995), 22-61, and also as a preprint in MPI-Bonn series in June 1993. MR**1334152 (96f:16044)****[AS1]**N. Andruskiewitsch, H.-J. Schneider,*Hopf algebras of order and braided Hopf algebras of order*, J. Algebra**199**(1998), 430-454. MR**1489920 (99c:16033)****[AS2]**N. Andruskiewitsch, H.-J. Schneider,*Lifting of quantum linear spaces and pointed Hopf algebras of order*, J. Algebra**209**(1998), 658-691. MR**1659895 (99k:16075)****[AS3]**N.Andruskiewitsch and H.-J.Schneider,*Finite quantum groups and Cartan matrices*, Adv. Math.**154**(2000), 1-45. MR**1780094 (2001g:16070)****[AS4]**N.Andruskiewitsch and H.-J.Schneider,*Pointed Hopf algebras*, in S. Montgomery and H.-J. Schneider, eds., ``New Directions in Hopf Algebras", MSRI Publ.**43**, Cambridge Univ. Press, 2002, pp. 1-68. MR**1913436 (2003e:16043)****[AS5]**N.Andruskiewitsch and H.-J.Schneider,*On the coradical filtration of Hopf algebras whose coradical is a Hopf subalgebra*, Bol. Acad. Nacional Cienc. Córdoba**65**(2000), 45-50. MR**1840438 (2002f:16079)****[Ar1]**A. Ardizzoni,*Separable Functors and Formal Smoothness*, submitted (arXiv:math.QA/0407095).**[AMS]**A. Ardizzoni, C. Menini, D. Stefan,*Hochschild Cohomology and ``Smoothness'' in Monoidal Categories*, J. Pure Appl. Algebra, in press, available online at doi:10.1016/j.jpaa.2005.12.003.**[BDG]**M. Beattie, S. Dascalescu, L. Grünenfelder,*On the number of types of finite dimensional Hopf algebras*, Invent. Math.**136**(1999), 1-7. MR**1681117 (2000a:16068)****[CDMM]**C. Calinescu, S. Dascalescu, C. Menini and A. Masuoka,*Quantum Lines over Non-Commutative Cosemisimple Hopf Algebras*, J. of Algebra**273**(2004) 753-779. MR**2037722 (2005a:16052)****[Dr]**V. G. Drinfeld,*Quantum groups*, ``Proceedings of the International Congress of Mathematicians", Vol.**1, 2**(Berkeley, Calif., 1986), 798-820, Amer. Math. Soc., Providence, RI, 1987. MR**0934283 (89f:17017)****[Ka]**C. Kassel,*Quantum groups*, Graduate Text in Mathematics**155**, Springer-Verlag, New York, 1995. MR**1321145 (96e:17041)****[Maj1]**S. Majid,*Crossed products by braided groups and bosonization*, J. Algebra**163**(1994), 165-190. MR**1257312 (94m:18009)****[Maj2]**S. Majid,*Foundations of quantum group theory*, Cambridge University Press, Cambridge, 1995. MR**1381692 (97g:17016)****[Mas]**A. Masuoka,*Hopf cohomology vanishing via approximation by Hochschild cohomology*, Banach Center Publ.**61**(2003), 111-123. MR**2024425 (2005b:16069)****[Mo]**S. Montgomery,*Hopf Algebras and their actions on rings,*CMBS Regional Conference Series in Mathematics**82**, Amer. Math. Soc., Providence, RI, 1993. MR**1243637 (94i:16019)****[Ra1]**D.E. Radford,*The structure of Hopf algebras with a projection*, J. Algebra**92**(1985), 322-347. MR**0778452 (86k:16004)****[Ra2]**D.E. Radford,*Minimal quasi-triangular Hopf algebras*, J. Algebra**157**(1993), 285-315. MR**1220770 (94c:16052)****[RT]**D. E. Radford, J. Towber,*Yetter-Drinfel'd categories associated to an arbitrary bialgebra.*J. Pure Appl. Algebra**87**(1993), no. 3, 259-279. MR**1228157 (94f:16060)****[Raf]**M. D. Rafael,*Separable functors revisited*, Comm. Algebra**18**(1990), 1445-1459. MR**1059740 (91g:18001)****[Sch1]**P. Schauenburg,*Hopf Modules and Yetter-Drinfel'd Modules*, J. Algebra**169**(1994), 874-890. MR**1302122 (95j:16047)****[Sch2]**P. Schauenburg,*The structure of Hopf algebras with a weak projection*, Algebr. Represent. Theory**3**(1999), 187-211. MR**1783799 (2002k:16071)****[Sch3]**P. Schauenburg,*Turning monoidal categories into strict ones*, New York J. Math.**7**(2001), 257-265. MR**1870871 (2003d:18013)****[SvO]**D. Stefan and F. van Oystaeyen,*The Wedderburn-Malcev theorem for comodule algebras*, Comm. Algebra**27**(1999), 3569-3581. MR**1699590 (2000d:16065)****[SR]**N. Saavedra Rivano,*Catégories Tannakiennes*, Lecture Notes in Mathematics, Vol.**265**, Springer-Verlag, Berlin, New York, 1972. MR**0338002 (49:2769)****[Sw]**M. Sweedler,*Hopf Algebras*, Benjamin, New York, 1969. MR**0252485 (40:5705)****[Sw2]**M. Sweedler,*Cohomology of algebras over Hopf algebras*. Trans. Amer. Math. Soc.**133**(1968), 205-239. MR**0224684 (37:283)****[TW]**E.J. Taft and R.L. Wilson,*On antipodes in pointed Hopf algebras*, J. Algebra**29**(1974), 27-42. MR**0338053 (49:2820)****[Wo]**S. L. Woronowicz,*Differential calculus on compact matrix pseudogroups (quantum groups)*, Comm. Math. Phys.**122**(1989), 125-170. MR**0994499 (90g:58010)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
16W30,
16S40

Retrieve articles in all journals with MSC (2000): 16W30, 16S40

Additional Information

**A. Ardizzoni**

Affiliation:
Department of Mathematics, University of Ferrara, Via Machiavelli 35, Ferrara, I-44100, Italy

Email:
alessandro.ardizzoni@unife.it

**C. Menini**

Affiliation:
Department of Mathematics, University of Ferrara, Via Machiavelli 35, I-44100, Ferrara, Italy

Email:
men@dns.unife.it

**D. Stefan**

Affiliation:
Faculty of Mathematics, University of Bucharest, Strada Academiei 14, Bucharest, RO-70109, Romania

Email:
dstefan@al.math.unibuc.ro

DOI:
https://doi.org/10.1090/S0002-9947-06-03902-X

Keywords:
Hopf algebras,
bialgebras,
smash (co)products,
monoidal categories

Received by editor(s):
July 1, 2004

Received by editor(s) in revised form:
November 3, 2004, and November 17, 2004

Published electronically:
October 17, 2006

Additional Notes:
This paper was written while the first two authors were members of G.N.S.A.G.A. with partial financial support from M.I.U.R. The third author was partially supported by I.N.D.A.M., while he was a visiting professor at the University of Ferrara.

Article copyright:
© Copyright 2006
American Mathematical Society