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UNIQUE RANGE SETS AND UNIQUENESS POLYNOMIALS
FOR ALGEBRAIC CURVES

TA THI HOAI AN AND JULIE TZU-YUEH WANG

Abstract. We study unique range sets and uniqueness polynomials for alge-
braic functions on a smooth projective algebraic curve over an algebraically
closed field of characteristic zero.

1. Introduction

Nevanlinna proved in 1926 that any two non-constant meromorphic functions
f, g sharing five distinct values (i.e. f−1(ai) = g−1(ai), for i = 1, ..., 5) must
be the same. In [11] Sauer proved that any two different meromorphic functions
on a compact Riemann surface of genus g > 0 cannot share more than 2 + 2

√
g

values. This number was recently sharpened to 2+
√

2g + 2, and bounds in terms of
gonality were also given by Schweizer in [12]. In [9] Gross introduced the concept
of unique range sets for functions which asked when two different functions can
share a set instead of several values. This problem has attracted attention not only
in the area of complex analysis, but also non-archimedean analysis and number
theory as well. In the course of study of unique range sets, one is often led to the
determination of strong uniqueness polynomials. The purpose of this paper is to
study these problems for compact Riemann surfaces. However, we prefer to phrase
it in the equivalent language of smooth algebraic curves due to the possibilities of
generalizing them to positive characteristic.

Throughout the paper, we let C be a smooth projective algebraic curve defined
over an algebraically closed field k of characteristic 0. Let K be its function field,
i.e. K := k(C). For each point p ∈ C, we may choose a uniformizer tp to define
a normalized order function vp := ordp : K → R ∪ {∞} at p. For a non-zero
element f ∈ K, the height h(f) counts its number of poles with multiplicities, i.e.
h(f) :=

∑
p∈C −min{0, vp(f)}. Let S be a finite set of points in C. We denote by

OS = {f ∈ K | vp(f) ≥ 0 for all p /∈ S} the ring of S-integers.

1.1. Strong uniqueness polynomial. A polynomial P in k[X] is called a strong
uniqueness polynomial for a family of functions F , if whenever there exist two
non-constant f and g of F , and a constant c such that P (f) = cP (g), then we
must have c = 1 and f = g. We note that this type of problem has also been
studied by number theorists and presented in different manners. For interested
readers, we refer to [5] for more discussion in this direction. The study of strong
uniqueness polynomials for meromorphic functions, entire functions, rational func-
tions, polynomials, non-archimedean meromorphic functions, and non-archimedean
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entire functions are quite complete by now. We do not attempt to give a complete
introduction on these results here, but refer to [3] and [4]. However, it is important
to point out how these problems were done and how they relate to the case of alge-
braic functions. Let F (X, Y, Z) be the homogenization of [P (X) − P (Y )]/[X − Y ]
and Fc(X, Y, Z), c �= 0, 1 ∈ k, be the homogenization of P (X) − cP (Y ). Let f
and g be meromorphic functions such that P (f) = bP (g) for some b ∈ C∗. Then
Φ := (f, g, 1) : C → P2 gives rise to a morphism, and moreover its image is in
[F (X, Y, Z) = 0] if b = 1 or [Fc(X, Y, Z) = 0] if b = c �= 1. From the Picard
theorem, we know this cannot happen if none of the curves [F (X, Y, Z) = 0] and
[Fc(X, Y, Z) = 0], for all c �= 0, 1, contains any component of genus zero or one.
In [3], this was done by constructing two linearly independent regular 1-forms on
these curves. For the case of rational functions or non-archimedean meromorphic
functions, it suffices to construct one regular 1-form on these curves. If f and g
are algebraic functions in K, then Φ becomes a morphism from C into one of the
above curves. By the Hurwitz theorem, we know this cannot happen if these curves
have no component of genus ≤ g. It does not seem possible to treat this case by
constructing g + 1 linearly independent 1-forms since g can be large. When g ≥ 2
and all of the curves [F (X, Y, Z) = 0] and [Fc(X, Y, Z) = 0], for all c �= 0, 1, contain
only components of genus ≥ 2, we cannot expect that there is no morphism between
them, however, by the theorem of de Franchis we do expect there are only finitely
many such morphisms. In this case, we will get a finite bound on the height of f
and g. We also note that if the coefficients of P (X) are in a number field K, then
by Mordell’s Conjecture (now Faltings’ theorem) [7] for each c �= 0 ∈ K there are
only finitely many pairs of (x, y) in K × K with x �= y such that P (x) = cP (y) if
(i) [F (X, Y, Z) = 0] when c = 1 or (ii) [Fc(X, Y, Z) = 0] when c �= 0, 1 contains no
component of genus zero or one. Therefore, the results in [3] also give answers for
such problems in number fields.

From now we will let P (X) be a polynomial of degree n in k[X]. We will use l
to denote the number of distinct roots of P ′(X), and we will denote those roots by
α1, α2, ..., αl. We will use m1, m2, ..., ml to denote the multiplicities of the roots in
P ′. Thus,

P ′(X) = a(X − α1)m1(X − α2)m2 ...(X − αl)ml ,(1)

where a is some non-zero constant. We will continually assume what we call Hy-
pothesis I:

P (αi) �= P (αj) whenever i �= j,

or in other words P is injective on the roots of P ′. We note that the Hypothesis I
is a generic condition, and one can see later from our arguments that it makes the
computation easier. For simplicity, we denote the following special cases for P (X)
as follows:

(1A) l = 2 and min{m1, m2} = 1;
(1B) l = 2 and m1 = m2 = 1;
(1C) l = 2 and m1 = m2 = 2;
(1D) l = 3 and m1 = m2 = m3 = 1;
(1E) l = 3 and m1 = m2 = m3 = 1, and there exist a permutation φ of {1, 2, 3}

such that φ(i) �= i for i = 1, 2, 3 and w satisfying w2 + w + 1 = 0 such that
w = P (αi)

P (αφ(i))
for i = 1, 2, 3.
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Recall that a subset U of k is affinely rigid if there exists no linear transformation
T such that TU = U . The main results are as follows.

Theorem 1. Let P (X) be a polynomial as above that satisfies Hypothesis I.
(I) (a) Let g = 0. P (X) is a strong uniqueness polynomial for K if and only

if the zero set U of P is affinely rigid and P does not satisfy (1A) or
(1E).

(b) Let g = 1. P (X) is a strong uniqueness polynomial for K if the zero
set U of P is affinely rigid and P does not satisfy (1A), (1C), or (1D).

(c) Let g ≥ 1. Assume that U is affinely rigid. P (X) is a strong unique-
ness polynomial for K if l ≥ 2g + 4.

(II) If |S| = 1, then P (X) is a strong uniqueness polynomial for OS if and only
if U is affinely rigid.

Theorem 2. Let P (X) be a polynomial as above satisfying Hypothesis I and let
its zero set U be affinely rigid. Suppose that f and g are two distinct non-constant
functions in K such that P (f) = cP (g) for some c �= 0 ∈ k. Then:

(a) h(f) = h(g) ≤ 8g − 8 if P does not satisfy (1A), (1C) or (1D),
(b) h(f) = h(g) ≤ 6g−6+3|S| if f and g are S-integers and P does not satisfy

(1B).

Remark 1. If the characteristic of k is p > 0 and p � n, the proof for the theorems
above can be carried out word to word if we assume that the multiplicity of X −αi

in P (X) − P (αi) is mi + 1, for i = 1, ..., l.

Remark 2. In [3], they actually showed that none of the curves [F (X, Y, Z) = 0]
and [Fc(X, Y, Z) = 0], for all c �= 0, 1, contain any component of genus zero or one
(resp. zero) if and only if the zero set of P is affinely rigid and P does not satisfy
(1A), (1C) or (1D) (resp. (1A) or (1E)).

As we have mentioned before, the construction of regular 1-forms does not work
for general function fields. We will treat the problems by comparing height func-
tions. Another advantage of the methods we present in this paper is that it can
treat the S-integer case at the same time it is corresponding to the case of entire
functions (cf. [2] and [6]). The study of these problems are included in section 2.

1.2. Unique range sets. For simplicity of notation, for η ∈ K� we let

v0
p(η) := max{0, vp(η)}, v̄0

p(η) := min{1, v0
p(η)},

i.e. its order of zero at p and its truncated value;

v∞p (η) := −min{0, vp(η)}, v̄∞p (η) := min{1, v∞p (η)},
i.e. its order of pole at p and its truncated value.

Let U be a subset of k. We define

Em
S̄ (f,U) =

⋃
a∈U

{(p, min{m, v0
p(f − a)}) | p /∈ S},

where m is a positive integer or ∞. Let f and g be two non-constant elements of
K. We say that they share U over S̄ counting multiplicities (CM for short) if

E∞
S̄ (f,U) = E∞

S̄ (g,U),

and share U over S̄ ignoring multiplicities (IM for short) if

E1
S̄(f,U) = E1

S̄(g,U).
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We note that our definition is slightly more general than that of Gross since S can
be chosen to be any finite subset of C. A set U is called a unique range set over
S̄ CM (resp. IM) for a subfamily F of K (for example, take F to be K or OS) if
whenever f and g share U over S̄ CM (resp. IM), then one must have f ≡ g.

The main results are

Theorem 3. Let U := {u1, ..., un} be an affinely rigid subset of k, and let P (X) =
(X − u1) · · · (X − un) satisfying Hypothesis I and P ′(X) be as in (1). Assume that
P does not satisfy (1A), (1C), or (1D). Assume further that l ≥ 2g + 4 if g ≥ 2.
Then U is a unique range set over S̄:

(a) IM for K, if n > max{2l + 13, 2l + 2 + 13g + 2|S|};
(b) CM for K, if n > max{2l + 7, 2l + 2 + 7g + 2|S|};
(c) IM for OS , if n > max{2l + 6, 2l − 5 + 13g + 6|S|};
(d) CM for OS, if n > max{2l + 3, 2l − 2 + 7g + 3|S|}.

Once again, when none of the curves [F (X, Y, Z) = 0] and [Fc(X, Y, Z) = 0], for
all c �= 0, 1, contains any component of genus zero or one, we obtain a bound on
the height of f and g in the following situations.

Theorem 4. Let U := {u1, ..., un} be an affinely rigid subset of k, and let P (X) =
(X − u1) · · · (X − un) satisfying Hypothesis I and P ′(X) be as in (1). Assume that
P does not satisfy (1A), (1C), or (1D).

(I) Suppose that f and g share U over S̄
(a) IM, then h(f) + h(g) ≤ 26g − 20 + 4|S| if n ≥ 2l + 13;
(b) CM, then h(f) + h(g) ≤ 22g − 8 + 4|S| if n ≥ 2l + 7.

(II) Suppose that f and g are S-integers and share U over S̄
(a) IM, then h(f) + h(g) ≤ 26g − 20 + 12|S| if n ≥ 2l + 6;
(b) CM, then h(f) + h(g) ≤ 22g − 8 + 10|S| if n ≥ 2l + 3.

The study of unique range sets is somehow more difficult, and far from complete
except for the case of polynomials and non-archimedean entire functions. In this
paper, we adapt an approach of Fujimoto [8] where he treated the case of meromor-
phic functions and entire functions. In section 3, we will prove a stronger version
of the truncated second main theorem of algebraic function fields and treat the
sharing value set problem.

2. Strong uniqueness polynomials

In this section, we let P (X) be a monic polynomial of degree n in k[X], and
let U be the zero set of the polynomial P . We will use l to denote the number of
distinct roots of P ′(X), and we will denote those roots by α1, α2, ..., αl. We will
use m1, m2, ..., ml to denote the multiplicities of the roots in P ′. Thus,

P ′(X) = n(X − α1)m1(X − α2)m2 ...(X − αl)ml .

We will continually assume what we call Hypothesis I:

P (αi) �= P (αj) whenever i �= j.

We will also use the following expansion of P at αi:

P (X) − P (αi) = bi,mi+1(X − αi)mi+1 + · · · + bi,n(X − αi)n.(2.1)

We will study some sufficient conditions for P to be a strong uniqueness poly-
nomial for K and also for OS , the ring of S-integers in K. When g ≥ 1, we will
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also study the height of f and g if they satisfy the equation P (f) = cP (g) for some
non-zero c ∈ k.

We first make the following observation.

Proposition 5. Assume that U is affinely rigid.
(i) If f and g are two distinct non-constant functions in K such that P (f) =

cP (g) for some c �= 0 ∈ k, then f and g satisfy no linear relation, i.e.
g �= λf + β for any λ, β ∈ k.

(ii) l ≥ 2.

Proof. Suppose that g = λf + β for some λ, β ∈ k. Then P (f) = cP (λf + β) since
P (f) = cP (g). Clearly, (λ, β) �= (1, 0) since f �= g. Let U = {u1, ..., un}. Then

(f − u1) . . . (f − un) = c(λf + β − u1) . . . (λf + β − un).

Since f is non-constant in K, this has to be a trivial relation, i.e. λ−n = c and
λU + β = U . Therefore U is not affinely rigid. This proves (i).

For (ii), we see that if l = 1, then P (X) = (X − α1)n + b for some b ∈ k. Let
ε �= 1 be an n-th root of unity, let f be any non-constant function in K, and let
g = εf − εα1 + α1. Then P (f) = P (g), which shows that U is not affinely rigid by
(i). �

For [f, g] ∈ P1(K), its height is defined by

h(f, g) :=
∑
p∈C

−min{vp(f), vp(g)}.

Clearly, h(f) = h(f, 1).
For simplicity of notation, for i ≥ 1, t ∈ K \ k and η ∈ K, we denote by

di
tη :=

diη

dti
, di

pη :=
diη

dtip
.

We recall the following well-known properties, which follow from the Riemann-Roch
theorem and the sum formula.

Proposition 6. Let η �= 0 ∈ K and [f, g] ∈ P1(K). We have
(i)

∑
p∈C vp(dpη) = 2g − 2 if η is not constant.

(ii)
∑

p∈C vp(η) = 0.
(iii) h(ηf, ηg) = h(f, g).

Lemma 7. Suppose that f and g are distinct non-constant functions in K and
P (f) = cP (g) for some non-zero constant c. Then h(f) = h(g), and

(i) h(P ′(f), P ′(g)) +
∑

p∈C min{v0
p(dpf), v0

p(dpg)} ≤ 2h(f) + 2g − 2;
(ii) h(P ′(f), P ′(g)) ≤ h(f) + |S| + 2g − 2, if f and g are S-integers;
(iii) h(f) ≥ 2, if U is affinely rigid;
(iv) |S| ≥ 2, if U is affinely rigid and f and g are S-integers.

Remark. We note that (i) implies that h(P ′(f), P ′(g)) ≤ 2h(f) + 2g − 2, since
v0
p(dpf) ≥ 0 and v0

p(dpg) ≥ 0.

Proof. Since P (f) = cP (g) for any p such that vp(f) < 0, we have nvp(f) =
vp(P (f)) = vp(P (g)) = nvp(g). Hence, h(f) = h(g). It also yields that

dtfP ′(f) = cdtgP ′(g),
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for t in K \ k, and hence

h(P ′(f), P ′(g)) = h(P ′(f)/P ′(g)) = h(c dtg/dtf) = h(dtf, dtg).(2.2)

Since dpf = dtfdpt,

vp(dtf) = vp(dpf) − vp(dpt).

If vp(f) < 0, then vp(dpf) = vp(f) − 1. If vp(f) ≥ 0, then vp(dpf) ≥ 0.
All together, we have

h(P ′(f), P ′(g)) = h(dtf, dtg)

=
∑
p∈C

−min{vp(dtf), vp(dtg)}

=
∑
p∈C

vp(dpt) +
∑

vp(f)<0

−min{vp(dpf), vp(dpg)} −
∑

vp(f)≥0

min{vp(dpf), vp(dpg)}

= 2g − 2 +
∑

vp(f)<0

(−vp(f) + 1) −
∑
p∈C

min{v0
p(dpf), v0

p(dpg)}

≤ h(f) + #{p ∈ C | vp(f) < 0} + 2g − 2 −
∑
p∈C

min{v0
p(dpf), v0

p(dpg)}.

Clearly, #{p ∈ C | vp(f) < 0} ≤ h(f), and #{p ∈ C | vp(f) < 0} ≤ |S| if f is an
S-integer. Therefore, we have concluded (i) and (ii).

Since f and g are not constant, we always have h(f) ≥ 1. If h(f) = 1, then
f has exactly one simple pole. Moreover, g also has exactly the same simple pole
since they satisfy the relation P (f) = cP (g). From the Laurent expansion of f and
g at this simple pole, we can find a constant λ such that f − λg has no pole and
hence it is a constant. By Proposition 5, this is impossible since U is assumed to
be affinely rigid. Therefore, h(f) ≥ 2.

We now prove (iv). Suppose that S contains only one point, say q ∈ C, and
f �= g are two S-integers such that P (f) = cP (g) for some c �= 0 ∈ k. Let Φ
be the morphism defined by [f, g, 1] : C → P2. Then the image Φ(C) is one of
the components of [F (X, Y, Z) = 0] if c = 1 or [Fc(X, Y, Z) = 0] if c �= 1, since
a morphism between two irreducible curves is surjective. Moreover, Φ(C) ∩ [Z =
0] = Φ(q) since q is the only pole for f and g. On the other hand, F (X, Y, 0) =
(Xn − Y n)/(X − Y ) and Fc(X, Y, 0) = Xn − cY n split into n − 1 and n distinct
linear factors, respectively. If Φ(C) is not a line, then there will be at least two
points in Φ(C) ∩ [Z = 0], which is impossible. �

The basic idea in this section is as follows. Suppose there are two distinct non-
constant functions f and g in K such that P (f) = cP (g), c �= 0 ∈ k. Lemma 7
then gives an upper bound for h(P ′(f), P ′(g)). On the other hand, to find a lower
bound for h(P ′(f), P ′(g)), we will need to find an element G in K such that the
height of G is not too big and the order of zero of G at each point of the curve is at
least equal to the minimum of the order of zeros of P ′(f) and P ′(g). To construct
such functions, we will use the following.

Proposition 8. Suppose there are non-constant functions f and g in K such that
P (f) = cP (g) for some 0 �= c ∈ k. If vp(f −αi) > 0 and vp(g−αj) > 0 for p ∈ C,
then

(i) (mi + 1)vp(f − αi) = (mj + 1)vp(g − αj);
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(ii) vp(bi,mi+1(f −αi)mi+1− cbj,mj+1(g−αj)mi+1) ≥ (mi +2)vp(f −αi), when
mi = mj.

In particular, if c = 1 and j = i, then vp(g − αi) = vp(f − αi), and
(iii) vp(f − g) ≥ vp(f − αi);
(iv) vp((f − αi)mi+1 − (g − αi)mi+1) ≥ (mi + 2)vp(f − αi).

Proof. If vp(f − αi) > 0 and vp(g − αj) > 0, then P (αi) = cP (αj) since P (f) =
cP (g). Then the expansions of P (X) at αi and αj in (2.1) yields

0 = P (f) − cP (g)

= [bi,mi+1(f − αi)mi+1 + {Higher order terms in f − αi }]
− c[bj,mj+1(g − αj)mj+1 + {Higher order terms in g − αj}].

The assertions (i), (ii) and (iv) follow easily from this equality. (iii) follows from
representing f − g = (f − αi) − (g − αi). �
2.1. On the equation P(f) = P(g). Recall the following cases for P (X):

(1A) l = 2 and min{m1, m2} = 1;
(1B) l = 2 and m1 = m2 = 1;
(1C) l = 2 and m1 = m2 = 2;
(1D) l = 3 and m1 = m2 = m3 = 1.

Lemma 9. Assume that P (X) is a polynomial as above satisfying Hypothesis I and
let U be its zero set. Suppose that f and g are two distinct non-constant functions
in K such that P (f) = P (g).

(I) Let g = 0. Then either l = 1 or P satisfies (1A).
(II) Let g ≥ 1 and U is affinely rigid. Then

(a) l ≤ g + 2;
(b) h(f) = h(g) ≤ 8g − 8 if P does not satisfy (1A), (1C), and (1D);
(c) h(f) = h(g) ≤ 6g − 6 + 3|S| if f and g are S-integers and P does not

satisfy (1B).

Proof. From Lemma 7, h(f) = h(g),

h(P ′(f), P ′(g)) ≤ 2h(f) + 2g − 2(2.1.1)

and

h(P ′(f), P ′(g)) ≤ h(f) + |S| + 2g − 2,(2.1.2)

if f and g are S-integers. Since P satisfies Hypothesis I, the only common zeros
of P ′(f) and P ′(g) are those p ∈ C such that (f(p), g(p)) = (αi, αi), 1 ≤ i ≤ l.
Therefore, min{vp(P ′(f)), vp(P ′(g))} > 0 only if vp(f −αi) > 0 and vp(g−αi) > 0
for some i = 1, ..., l. To obtain a lower bound of h(P ′(f), P ′(g)), we will need to
construct a non-zero element G in K with high order of zeros at each p such that
vp(f − αi) > 0 and vp(g − αi) > 0 for i = 1, ..., l. By rearranging αi, we may
assume that m1 ≥ m2 ≥ · · · ≥ ml. We first take

G := (f − g)m1

which is not zero since f �= g. Suppose vp(f −αi) > 0 and vp(g−αi) > 0. Clearly,
vp(f − αj) = vp(g − αj) = 0 if j �= i. By Proposition 8, vp(f − αi) = vp(g − αi)
and

vp(G) = m1vp(f − g) ≥ mivp(f − αi) = vp(P ′(f)) = vp(P ′(g)).



944 TA THI HOAI AN AND JULIE TZU-YUEH WANG

Therefore, we may conclude that

min{vp(P ′(f)), vp(P ′(g))} − vp(G) ≤ 0 if vp(f) ≥ 0.

On the other hand, if vp(f) < 0, then vp(f) = vp(g), vp(P ′(f)) = vp(P ′(g)) =
(n − 1)vp(f) and vp(f − g) ≥ vp(f). We have

min{vp(P ′(f)), vp(P ′(g))} − vp(G) ≤
l∑

i=2

mivp(f).

Therefore,

h(P ′(f), P ′(g)) = h(P ′(f)/G, P ′(g)/G)

= −
∑

vp(f)<0

(min{vp(P ′(f)), vp(P ′(g))} − vp(G))

−
∑

vp(f)≥0

(min{vp(P ′(f)), vp(P ′(g))} − vp(G))

≥ −
∑

vp(f)<0

l∑
i=2

mivp(f) =
l∑

i=2

mih(f).

Together with (2.1.1) we have

(
l∑

i=2

mi − 2)h(f) ≤ 2g − 2,(2.1.3)

and (2.1.2) gives

(
l∑

i=2

mi − 1)h(f) ≤ |S| + 2g − 2(2.1.4)

if f and g are S-integers
If g = 0, then (2.1.3) implies that l = 1 or l = 2 and m2 = 1. This completes

the proof of (I).
From now we assume that g ≥ 1. Since f is assumed to be non-constant and U

is affinely rigid, we have h(f) ≥ 2. Then (2.1.3) implies that
∑l

i=2 mi ≤ g + 1, and
therefore, l ≤ g + 2. This completes the proof of (II)(a).

Equation (2.1.3) also implies that h(f) ≤ 2g − 2 if
∑l

i=2 mi ≥ 3 which holds
in the following cases: (i) l ≥ 4, (ii) l = 3 except when m2 = m3 = 1, or (iii)
l = 2 except when m2 ≤ 2. For (II)(b), it then remains to consider when (1) l = 3,
m2 = m3 = 1 and m1 ≥ 2 and (2) l = 2, m2 = 2 and m1 ≥ 3.

Case 1. l = 3, m2 = m3 = 1 and m1 ≥ 2:
Let

G := (f − g)2((f − α1)m1+1 − (g − α1)m1+1)m1−1.

We claim

(m1 + 1) min{vp(P ′(f)), vp(P ′(g))} − vp(G) ≤ 0, if vp(f) ≥ 0.

From our previous discussion, it suffices to consider those p for which vp(f−αi) > 0
and vp(g −αi) > 0 for some i = 1, ..., l. If vp(f −α1) > 0 and vp(g −α1) > 0, then
from Proposition 8, vp(f − α1) = vp(g − α1) ≤ vp(f − g), and

vp((f − α1)m1+1 − (g − α1)m1+1) ≥ (m1 + 2)vp(f − α1).
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Therefore,

vp(G) ≥ m1(m1 + 1)vp(f − α1) = (m1 + 1) min{vp(P ′(f)), vp(P ′(g))}.

If vp(f − αi) > 0 and vp(g − αi) > 0, i = 2, 3, from the fact that (f − g)m1+1 is a
factor of (f − α1)m1+1 − (g − α1)m1+1 and vp(f − g) ≥ vp(f − αi), we have

vp(G) ≥ (m1 + 1)vp(f − αi) = (m1 + 1) min{vp(P ′(f)), vp(P ′(g))}.

Therefore, the claim is valid. It is easy to see that

min{vp(P ′(f))m1+1, vp(P ′(g))m1+1} − vp(G) ≤ (3m1 + 1)vp(f), if vp(f) < 0.

Therefore

(m1 + 1)h(P ′(f), P ′(g)) = h(P ′(f)m1+1, P ′(g)m1+1)

= h(P ′(f)m1+1/G, P ′(g)m1+1/G)

≤ (3m1 + 1)h(f).

Together with (2.1.1), we have

m1 − 1
m1 + 1

h(f) ≤ 2g − 2.

Since m1 ≥ 2, it yields

h(f) ≤ 3(2g − 2).

Case 2. l = 2, m2 = 2 and m1 ≥ 3:
Let

G := (f − g)m1+4((f − α1)m1+1 − (g − α1)m1+1)m1−2.

Repeat the arguments as in Case 1 to get

m1 − 2
m1 + 1

h(f) ≤ 2g − 2.

If m1 ≥ 3, then

h(f) ≤ 4(2g − 2).

This completes the proof for (II)(b).
Assume further that f and g are S-integers. Then the previous arguments imply

that

h(f) = h(g) ≤ 3(2g − 2),

except for (1) l = 3 and m1 = m2 = m3 = 1, and (2) l = 2, m2 = 1. For (1), we
simply take G = f − g. Then by (2.1.2), we have h(f) ≤ 2g − 2 + |S|. For (2), we
only need to consider when l = 2, m2 = 1, and m1 ≥ 2. Let

G := (f − g)2((f − α1)m1+1 − (g − α1)m1+1)m1−1.

Replacing (2.1.1) in the previous arguments by (2.1.2), we have

m1 − 1
m1 + 1

h(f) ≤ 2g − 2 + |S|.

Since m1 ≥ 2, we have h(f) ≤ 3(2g − 2 + |S|). �



946 TA THI HOAI AN AND JULIE TZU-YUEH WANG

2.2. On the equation P(f) = cP(g), c �= 0,1. Recall the following special cases
for P (X):

(1A) l = 2 and min{m1, m2} = 1;
(1B) l = 2 and m1 = m2 = 1;
(1C) l = 2 and m1 = m2 = 2;
(1D) l = 3 and m1 = m2 = m3 = 1;
(1E) l = 3 and m1 = m2 = m3 = 1 and there exist a permutation φ of {1, 2, 3}

such that φ(i) �= i for i = 1, 2, 3 and w satisfying w2 + w + 1 = 0 such that
w = P (αi)

P (αφ(i))
for i = 1, 2, 3.

We will establish the following results in this subsection.

Lemma 10. Assume that P (X) is a polynomial as above satisfying Hypothesis I
and the zero set U of P is affinely rigid. Suppose that f and g are two distinct
non-constant functions in K such that P (f) = cP (g) for some c �= 0, 1 ∈ k. We
have the following:

(I) Let g = 0. Then P satisfies (1A) or (1E).
(II) Let g ≥ 1. Then l ≤ 2g + 3.

Lemma 11. Let P (X) be a polynomial as above satisfying Hypothesis I. Assume
the zero set U of P is affinely rigid. Suppose that f and g are two distinct non-
constant functions in K such that P (f) = cP (g) for some c �= 0, 1 ∈ k. We have
the following:

(I) Let g ≥ 1. Then h(f) = h(g) ≤ 4g − 4 if P does not satisfy (1A) or (1D).
(II) h(f) = h(g) ≤ 4g−4+2|S|, if f and g are S-integers and it does not satisfy

(1B).

The proof of the above lemmas is similar to the previous subsection. We first
state some facts that will be used throughout this subsection. Let

l0 := #{(i, j) | P (αi) = cP (αj)}.
Since P (X) satisfies Hypothesis I, it is easy to see that 0 ≤ l0 ≤ l and l0 = l if and
only if there exists a permutation φ of {1, 2, ..., l} such that (αi, αφ(i), 1) ∈ Cc for
any i = 1, ..., l, i.e.

P (α1)
P (αφ(1))

=
P (α2)

P (αφ(2))
= ... =

P (αl)
P (αφ(l))

= c.

For simplicity of notation, in what follows φ will always be a permutation of
(1,2, ..., l) such that φ(i) = j if P(αi) = cP(αj). For a fixed permutation φ and
1 ≤ i �= j ≤ l we define Lφ

i,j(f, g) = Li,j as follows:

Li,j := (g − αφ(i)) −
αφ(i) − αφ(j)

αi − αj
(f − αi)(2.2.1)

which can also be expressed as

Li,j = (g − αφ(j)) −
αφ(i) − αφ(j)

αi − αj
(f − αj).(2.2.2)

At each point p ∈ C we infer from (2.2.1) and (2.2.2) that

vp(Li,j) ≥ min{vp(f − αi), vp(g − αφ(i))}, and(2.2.3)

vp(Li,j) ≥ min{vp(f − αj), vp(g − αφ(j))}.
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Proof of Lemma 10. Since P (f) = cP (g), it follows from Lemma 7 that h(f) =
h(g),

h(P ′(f), P ′(g)) ≤ 2h(f) + 2g − 2,(2.2.4)

and

h(P ′(f), P ′(g)) ≤ h(f) + |S| + 2g − 2,(2.2.5)

if f and g are S-integers. Let

A0 := {i, 1 ≤ i ≤ l | P (αi) = cP (αφ(i))}, l0 = #A0,

A1 := {i ∈ A0 | mi = mφ(i)}, l1 = #A1,

A2 := {i ∈ A0 | mi > mφ(i)}, l2 = #A2,

A3 := {i ∈ A0 | mi < mφ(i)}, l3 = #A3.

Without loss of generality, we let A1 = {1, 2, ..., l1}, and m1 ≥ m2 ≥ · · · ≥ ml1 . Let

G := (f − αl1)
ml1 (l1−2[

l1
2 ])

[
l1
2 ]∏

i=1

(L2i−1,2i)m2i−1
∏

i∈A2

(g − αφ(i))mφ(i)
∏

i∈A3

(f − αi)mi ,

which is not zero since we assume that U is affinely rigid. Similar to the proof of
Lemma 9, we claim that

min{vp(P ′(f)), vp(P ′(g))} − vp(G) ≤ 0, if vp(f) ≥ 0.

For this, it suffices to verify for those p such that vp(f − αi) > 0 and
vp(g − αφ(i)) > 0 for some i ∈ A0. If i ∈ A1, then vp(f − αi) = vp(g − αφ(i))
and the assertion follows from (2.2.3). The assertion is also clear when i ∈ A2 or
A3 since min{vp(P ′(f)), vp(P ′(g))} = min{mivp(f − αi), mφ(i)vp(g − αφ(i))}.

If vp(f) < 0, then vp(f) = vp(g) = vp(L2i−1,2i) = vp(g − αj) = vp(f − αl1).
Hence,

min{vp(P ′(f)), vp(P ′(g))} − vp(G)

≤ [
[

l1
2 ]∑

i=1

m2i +
∑
i∈A2

(mi − mφ(i)) +
∑
i �∈A0

mi]vp(f).

In conclusion, we have

h(P ′(f), P ′(g)) = h(P ′(f)/G, P ′(g)/G)

≥ [
∑
i/∈A0

mi +
[

l1
2 ]∑

i=1

m2i +
∑
i∈A2

(mi − mφ(i))]h(f).

Together with (2.2.4) we have

[−2 +
∑
i/∈A0

mi +
[

l1
2 ]∑

i=1

m2i +
∑
i∈A2

(mi − mφ(i))] h(f) ≤ 2g − 2,(2.2.6)

and, similarly

[−2 +
∑
i/∈A0

mi +
[

l1
2 ]∑

i=1

m2i +
∑
i∈A3

(mφ(i) − mi)] h(f) ≤ 2g − 2.(2.2.7)
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If f and g are S-integers, then (2.2.5) implies that

[−1 +
∑
i/∈A0

mi +
[

l1
2 ]∑

i=1

m2i +
∑
i∈A2

(mi − mφ(i))] h(f) ≤ 2g − 2 + |S|(2.2.8)

and

[−1 +
∑
i/∈A0

mi +
[

l1
2 ]∑

i=1

m2i +
∑
i∈A3

(mφ(i) − mi)] h(f) ≤ 2g − 2 + |S|.(2.2.9)

We first consider the case g = 0. The right-hand sides of (2.2.6) and (2.2.7) are
negative, therefore

∑
i/∈A0

mi +
[

l1
2 ]∑

i=1

m2i +
∑
i∈A2

(mi − mφ(i)) ≤ 1,

∑
i/∈A0

mi +
[

l1
2 ]∑

i=1

m2i +
∑
i∈A3

(mφ(i) − mi) ≤ 1.

From these two inequalities, we see that l0 ≥ l − 1. Moreover, if l0 = l − 1, then
l2 = l3 = 0, l1 = 1 and m2 = 1 which implies that l = 2 and min{m1, m2} = 1.
Suppose now that l0 = l. Then it is clear that l1 ≤ 3. If l1 = 3, then m2 = m3 = 1
and l2 = l3 = 0, which also implies that l = 3 and hence m1 = 1. If l1 = 2, then
m1 = m2 = 1 and l2 = l3 = 0, which implies that l = 2. One can also easily check
that it is impossible to have l1 = 0. Finally, if l1 = 1, then the only possibility
is l2 = l3 = 1 and m2 − mφ(2) = 1, m3 − mφ(3) = −1 if we assume without
loss of generality that {2} = A2 and {3} = A3. In this case, we replace G by
Lm1

1,3 (g − αφ(2))mφ(2) and repeat the same process to get m2 = 1, which contradicts
the fact that m2 − mφ(2) = 1. Therefore, this case is eliminated, and the proof for
assertion (I) is complete.

We now consider generally when g ≥ 1. Since l0 = l1 + l2 + l3, we deduce the
following:

∑
i/∈A0

mi +
[

l1
2 ]∑

i=1

m2i +
∑
i∈A2

(mi − mφ(i)) +
∑
i/∈A0

mi +
[

l1
2 ]∑

i=1

m2i +
∑
i∈A3

(mφ(i) − mi)

≥ 2(l − l0) + (l1 − 1) + l2 + l3 = (l − l0) + l − 1 ≥ l − 1.

Hence, from (2.2.6) and (2.2.7) we have

(−5 + l)h(f) ≤ 4g − 4.(2.2.10)

Since f and g are assumed not to be constant, h(f) ≥ 2 if U is affinely rigid. (2.2.10)
implies l ≤ 2g + 3. �

As consequences of (2.2.6), (2.2.7), (2.2.8), and (2.2.9), we have the following.

Proposition 12. Let P (X) be a polynomial as above satisfying Hypothesis I. As-
sume the zero set U of P is affinely rigid. Let φ be a permutation of {1, 2, ..., l}
such that φ(i) = j if P (αi) = cP (αj). Suppose that there are two distinct functions
f and g in K such that P (f) = cP (g) for some c �= 0, 1 ∈ k. Then

(i) h(f) = h(g) ≤ 2g − 2, if there exists i such that |mi − mφ(i)| ≥ 3.
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(ii) h(f) = h(g) ≤ 2g − 2 + |S| if f and g are S-integers and there exists i such
that |mi − mφ(i)| ≥ 2.

Proof of Lemma 11. We note that if vp(f) ≥ 0, then

min{vp(P ′(f)), vp(P ′(g))} = min{mivp(f − αi), mφ(i)vp(g − αφ(i))}

if vp(f − αi) > 0 and vp(g − αφ(i)) > 0 for some 1 ≤ i ≤ l; the value is zero
otherwise.

Assume that m1 ≥ m2 ≥ · · · ≥ ml. The proof will be split into several cases.
Case 1. m2 ≥ 3.
Let

G := Lm1
1,2

l∏
i=3

(f − αi)mi .

Then

min{vp(P ′(f)), vp(P ′(g))} − vp(G) = m2vp(f), if vp(f) < 0.

Similarly, we claim that

min{vp(P ′(f)), vp(P ′(g))} − vp(G) ≤ 0, if vp(f) ≥ 0.

From the choice of G, we only need to verify the claim when vp(f − αi) > 0 and
vp(g − αφ(i)) > 0 for i = 1, 2. In these cases, the claim is an implication of (2.2.3).
Therefore, we have

h(P ′(f), P ′(g)) = h(P ′(f)/G, P ′(g)/G) ≥ m2h(f).

Together with Lemma 7, it gives

h(f) ≤ (m2 − 2)h(f) ≤ 2g − 2.

Case 2. m2 = 2, m1 ≥ 3.
If m1 ≥ 5, then m1 − mφ(1) ≥ 3. Therefore, the assertion is concluded in this

case by Proposition 12. It is left to consider when m1 = 3, 4. Let

G := Lm1−1
1,2

l∏
i=3

(f − αi)mi .

If vp(f) < 0, then

min{vp(P ′(f)), vp(P ′(f))} − vp(G) = 3vp(f).

Similarly, if vp(f) ≥ 0, it is easy to check that

min{vp(P ′(f)), vp(P ′(g))} − vp(G) ≤ 0

except for p such that vp(f − αi) > 0 and vp(g − αφ(i)) > 0 for i = 1 or 2. For
these exceptional cases, we will show that

min{vp(P ′(f)), vp(P ′(g))} − vp(G) ≤ min{v0
p(dpf), v0

p(dpg)}.(2.2.11)

We then have

h(P ′(f), P ′(g)) = h(P ′(f)/G, P ′(g)/G) ≤ 3h(f) −
∑
p∈C

min{v0
p(dpf), v0

p(dpg)}.

Together with Lemma 7, it yields h(f) ≤ 2g − 2.
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We now prove (2.2.11) for each p such that vp(f −αi) > 0 and vp(g−αφ(i)) > 0
with i = 1 or 2. For i = 1, we have by Proposition 8 that

(m1 + 1)vp(f − α1) = (mφ(1) + 1)vp(g − αφ(1)).(2.2.12)

It then implies that

min{vp(P ′(f)), vp(P ′(g))} − vp(G) ≤ vp(f − α1) −
m1 − mφ(1)

mφ(1) + 1
vp(f − α1).

Since v0
p(dpf) = vp(f − α1) − 1, it remains to show that m1−mφ(1)

mφ(1)+1 vp(f − α1)
≥ 1. This can be done by the following observation. If (m1, mφ(1)) = (3, 2) or
(4, 2), then (2.2.12) implies that vp(f − αi) ≥ 3. If (m1, mφ(1)) = (3, 1), then
(m1 − mφ(1))/(mφ(1) + 1) = 1. We note that the case (m1, mφ(1)) = (4, 1) can be
covered by Proposition 12. Similarly, for i = 2 we have

3vp(f − α2) = (mφ(2) + 1)vp(g − αφ(2)).(2.2.13)

If mφ(2) ≤ 2, then min{vp(P ′(f)), vp(P ′(g))} ≤ 2vp(f−α2) ≤ (m1−1)vp(f−α2) =
vp(G) by (2.2.3) and m1 ≥ 3. If mφ(2) > 2, then mφ(2) = m1 and vp(L1,2) =
vp(g − αφ(2)) < vp(f − α2). Therefore

min{vp(P ′(f)), vp(P ′(f))} − vp(G) = vp(g − αφ(2)) −
m1 − 2

3
vp(g − αφ(2)).

Since vp(d0
pg) = vp(g − αφ(2))− 1, it remains to show that m1−2

3 vp(g −αφ(2)) ≥ 1.
This follows easily from (2.2.13) that vp(g − αφ(2)) ≥ 3 if m1 = 3 or 4.

For the rest of the proof, we will give G in each case and skip the proof if it is
similar to one of the previous cases.

Case 3. m2 = 2, m1 = 2 and l ≥ 3.
If m3 = 2, then we take

G := L1,2L1,3L2,3

l∏
i=4

(f − αi)mi .

It then remains to consider when m3 = 1. If mφ(1) = mφ(2) = 2, then either (i)
l = 3 and P (α3) �= cP (αi) for any i, (i.e. l0 ≤ 2), or (ii) l ≥ 4 and mφ(3) = mφ(4) =
1. For (i), we let

G := L2
1,2

l∏
i=4

(f − αi)mi ;

for (ii), we let

G := L2
1,2L3,4

l∏
i=5

(f − αi)mi .

Otherwise, we may assume without loss of generality that mφ(2) = 1.

G := L1,2L1,3

l∏
i=4

(f − αi)mi .

We will omit the proof for this case, since it is similar to the proof of Case 2.
Case 4. m2 = 2, m1 = 2 and l = 2.
If l0 = 2, then once can easy to see that c = −1 and X + Y −α1 −α2 is a linear

factor of P (X) + P (Y ) which implies that U is not affinely rigid. Hence we only
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need to consider l0 < 2. If l0 = 0, simply take G = 1. If l0 = 1, we may assume
that P (α2) �= cP (α1) and P (α1) = cP (α2). We let

G := b1,3(f − α1)3 − cb2,3(g − α2)3.

From Proposition 8(ii) we have

vp(G) ≥ 4 min{vp(f − α1), vp(g − α2)}, if vp(f) ≥ 0.

It is then easy to verify that

h(P ′(f), P ′(g)) =
1
2
h((f − α1)4(f − α2)4/G, (g − α1)4(g − α2)4)/G) ≥ 5

2
h(f),

and h(f) ≤ 4g − 4, from Lemma 7.
Case 5. m2 = 1.
In this case, mi = 1 for all i ≥ 2 and, under the assumption of the lemma,

l ≥ 3. By Proposition 12 we only need to consider when m1 ≤ 3. Without loss of
generality we may assume that mφ(2) = m1. Then mφ(i) = 1 if i �= 2. If m1 = 3,
we let

G := (g − αφ(1))(f − α2)L1,2L2,3L3,1

l∏
i=4

(f − αi)2.

Then

2 min{vp(P ′(f)), vp(P ′(g))} − vp(G) = 5vp(f), if vp(f) < 0.

We can also verify similarly that

2 min{vp(P ′(f)), vp(P ′(g))} − vp(G) ≤ 0, if vp(f) ≥ 0.

Therefore

h(P ′(f), P ′(g)) =
1
2
h((P ′(f))2/G, (P ′(g))2/G) ≥ 5

2
h(f)

and then h(f) ≤ 4g − 4.
If m1 = 2, we let

G := L1,2L2,3L3,1

l∏
i=4

(f − αi)2.

Similarly, if vp(f) < 0, then

2 min{vp(P ′(f)), vp(P ′(g))} − vp(G) = 5vp(f).

If vp(f) ≥ 0, one can similarly verify Case 2 where

min{vp(P ′(f)), vp(P ′(g))} − 1
2
vp(G) ≤ min{v0

p(dpf), v0
p(dp)g}.

Then, we will get h(f) ≤ 4g − 4.
If m1 = 1 and l ≥ 5, we take

G := L1,2L2,3L3,4L4,5L5,1

l∏
i=6

(f − αi)2

which gives h(f) ≤ 4g − 4.
If m1 = 1 and l = 4 and l0 ≤ l− 1, we may assume that P (α4) �= cP (αj) for any

j. We take
G := L1,2L2,3L3,1

which then gives h(f) ≤ 4g − 4.
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If m1 = 1 and l = 4 and l0 = l, then P (X) − cP (Y ) has a linear factor which
implies that U is not affinely rigid, contradicting our assumption. The proof will
be given in the next proposition, which will complete the proof for (I).

(II) can be obtained from the arguments for (I) by replacing the use of (2.2.4)
by (2.2.5). Therefore, it remains to treat the cases when (1) l = 2, m2 = 1 and
m1 ≥ 2 or (2) l = 3 and m1 = m2 = m3 = 1.

Case 1. l = 2, m2 = 1 and m1 ≥ 2.
In this case, we take

G := L1,2.

If vp(f − α1) > 0, vp(g − α2) > 0, then

2vp(g − α2) = 3vp(f − α1) = 3vp(L1,2).

Hence

min{vp(P ′(f)), vp(P ′(g))} − vp(G) =
1
2
vp(f − α1) ≤ vp(f − α1) − 1 = v0

p(dpf).

Similarly,

min{vp(P ′(f)), vp(P ′(g))} − vp(G) ≤ v0
p(dpg),

if vp(f − α2) > 0, vp(g − αφ(2)) > 0. Therefore,

h(P ′(f), P ′(g)) = h(P ′(f)/G, P ′(g)/G) ≤ 2h(f) −
∑
p∈C

min{v0
p(dpf, v0

p(dp)g}.

Then h(f) ≤ 2g − 2 + |S|, by Lemma 7.
Case 2. l = 3 and m1 = m2 = m3 = 1.
Let G := L1,2L2,3L3,1. Then

h(P ′(f), P ′(g)) =
1
2
h(P ′(f)2/G, P ′(g)2/G)

≥ 3
2
h(f),

which implies that h(f) ≤ 4g− 4 + 2|S| and hence completes the proof for (II). �

Proposition 13. Let P (X) be a polynomial as above satisfying Hypothesis I. Sup-
pose that l = 4, mi = 1, and there is a permutation φ of {1, 2, ..., l} such that
P (αi) = cP (αφ(i)) for each 1 ≤ i ≤ 4. Then U is not affinely rigid.

Proof. We will prove this by contradiction. Assume that U is affinely rigid. Con-
sider the curve Cc = [Fc(X, Y, Z) = 0] in P2 defined by the homogenization of
P (X) − cP (Y ). We first recall from [13] that (i) Fc has no linear factor if U is
affinely rigid; (ii) the curve Cc has only 4 ordinary singularities of multiplicities 2,
and hence, its deficiency δFc

= 2. Then either Cc is an irreducible curve of genus 2
or Fc = AB, where A and B are irreducible with degree 2 and 3, respectively.

On the other hand, we can construct 3 regular 1-forms on Cc as follows:

ω1 := ηH1,2H3,4, ω2 := ηH1,3H2,4, and ω3 := ηH1,4H2,3,

where

η :=
Y dZ − ZdY∏4
i=1(X − αiZ)

, and Hi,j := (Y − αφ(i)Z) −
αφ(i) − αφ(j)

αi − αj
(X − αiZ).

Moreover, these 1-forms are non-trivial on each component of Cc since Cc has no
linear components. (We refer readers to [3] or [4] for more details.) The existence
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of 1-forms implies that Cc has no component of genus zero. Together with the
previous discussion, we see that Cc is irreducible of genus 2. This again will imply
that these three 1-forms have to be linearly dependent over k. Therefore, we have
a linear relation on Cc:

αH1,2H3,4 + βH1,3H2,4 + γH1,4H2,3 = 0,

where α, β, γ ∈ k. This equation defines a quadratic curve, and the equation is
satisfied for all points in Cc. This would give a contradiction again, since we have
shown that Cc is an irreducible curve of degree 4. Therefore, U cannot be affinely
rigid. �

2.3. Proof of Theorem 1 and Theorem 2.

Proposition 14. If there exists (λ, β) �= (1, 0) ∈ k× k, such that U = λU + β, i.e.
U is not affinely rigid, then P (f) = λnP (λ−1(f − β)) for any f ∈ K.

Proof. Let U = {u1, ..., un}. Then U = λU + β implies that

P (X) = (X−u1) . . . (X−un) = (X−λu1−β) . . . (X−λun−β) = λnP (λ−1(X−β)).

Therefore, P (f) = λnP (λ−1(f − β)) for any f ∈ K. �

Proof of Theorem 1 and Theorem 2. Theorem 2 clearly follows from Lemmas 9 and
11. Theorem 1(I)(b) follows from Theorem 2(a); Theorem 1(I)(c) from Lemmas 9
and 10; and Theorem 1 (II) from Lemma 7 and Proposition 14. When g = 0,
we have shown in Lemmas 9 and 10 that P (X) is a strong uniqueness polynomial
if U is affinely rigid and P does not satisfy (1A) or (1E). On the other hand,
if U is not affinely rigid, then Proposition 14 shows that P (X) is not a strong
uniqueness polynomial. Moreover, it is also easy to check that if P satisfies (1A),
then [F (X, Y, Z) = 0] is an irreducible curve of genus zero, and if P satisfies (1E),
then [Fw(X, Y, Z) = 0] is also an irreducible curve of genus zero. Therefore, there
must exist two distinct algebraic functions f and g in K giving rise to a morphism
from C to [F (X, Y, Z) = 0] or [Fw(X, Y, Z) = 0], respectively. Therefore, P (f) =
P (g) or P (f) = wP (g), respectively. This shows that P is not a strong uniqueness
polynomial if P satisfies (1A) or (1E), and hence completes the proof of Theorem
1(I)(a). �

3. Unique range sets

3.1. Proof of Theorem 3 and Theorem 4. Let U := {u1, ..., un} be a subset of
k, and let f and g be two distinct non-constant functions in K. We say f and g
satisfy (Cm0,S̄) if

n∑
i=1

min{m0, v0
p(f − ui)} =

n∑
i=1

min{m0, v0
p(g − ui)}, for all p /∈ S.(Cm0,S̄)

Here m0 is a positive integer or m0 = ∞. When m0 = 1, this is equivalent to saying
that f and g share U outside of S ignoring multiplicities; and when m0 = ∞, this
is equivalent to saying that f and g share U outside of S counting multiplicities.
Let

P (X) = (X − u1) · · · (X − un)(3.1)
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be the associate polynomial of U , and let

P ′(X) = n(X − α1)m1 · · · (X − αl)ml ,(3.2)

where the αi’s are distinct. In this section, we will prove the following theorem
which implies Theorems 3 and 4.

Theorem 15. Let U := {u1, ..., un} be an affinely rigid subset of k, let P (X) =
(X − u1) · · · (X − un) satisfy Hypothesis I and let P ′(X) be as (1) and (i) l ≥ 4,
(ii) l = 3 and max{m1, m2, m3} ≥ 2 or (iii) l = 2 and min{m1, m2} ≥ 2. Suppose
that f and g are two distinct non-constant functions in K satisfying (Cm0,S̄).

(I) (a) If m0 = 1 and n ≥ 2l + 13, then h(f) + h(g) ≤ 26g − 20 + 4|S|.
(b) If m0 ≥ 2 and n ≥ 2l + 7 + 4

m0−1 , then h(f) + h(g) ≤ 22g − 8 + 4|S|.
(c) If m0 = 1, f and g are S-integers, and if n ≥ 2l+6, then h(f)+h(g) ≤

26g − 20 + 12|S|.
(d) If m0 ≥ 2, f and g are S-integers, and if n ≥ 2l + 3 + 2

m0−1 , then
h(f) + h(g) ≤ 22g − 8 + 10|S|.

(II) Assume further that l ≥ 2g + 4 if g ≥ 2.
(a) If m0 = 1, then n ≤ max{2l + 13, 2l + 2 + 13g + 2|S|}.
(b) If m0 ≥ 2, then n ≤ max{2l + 7 + 4

m0−1 , 2l + 2 + (7 + 4
m0−1 )g + 2|S|}.

(c) If m0 = 1 and f and g are S-integers, then

n ≤ max{2l + 6, 2l − 5 + 13g + 6|S|}.
(d) If m0 ≥ 2 and f and g are S-integers, then

n ≤ max{2l + 3 +
2

m0 − 1
, 2l − 2 − 2

m0 − 1
+ (7 +

4
m0 − 1

)g + (3 +
2

m0 − 1
)|S|}.

The proof of Theorem 15 will follow the ideas in [8] and use some tools for
function fields.

3.2. Some basic results on function fields. Throughout this section, we assume
further that t (∈ K) is obtained as follows. Choose a point q ∈ S, and consider the
k-vector space

L((g + 1)q) := {η ∈ K |(η)0 − (η)∞ ≥ −(g + 1)q}.
From the Riemann-Roch theorem, the dimension of this vector space is at least 2.
Therefore, there exists a non-constant function t in this vector space. Moreover,
from this construction t has only one pole at q with order at most g+1. With this
choice, we have

Proposition 16. (i) h(t) ≤ g + 1,
(ii)

∑
p/∈S vp(dpt) ≤ 3g.

Proof. (i) is clear from the construction of t. For (ii), from the Riemann-Roch
theorem we have ∑

p/∈S

vp(dpt) = 2g − 2 −
∑
p∈S

vp(dpt)

≤ 2g − 2 − (vq(t) − 1)

≤ 2g − 1 + h(t) ≤ 3g.

�



UNIQUE RANGE SETS AND UNIQUENESS POLYNOMIALS 955

Proposition 17. Let η be a non-constant function in K. Then∑
p∈C

v0
p(dpη) ≤ 2h(η) + 2g − 2.

Moreover, if η is an S-integer, then∑
p∈C

v0
p(dpη) ≤ h(η) + 2g − 2 + |S|.

Proof. The first assertion follows from the following computation:∑
p∈C

v0
p(dpη) =

∑
vp(η)≥0

vp(dpη) =
∑

vp(η)≥0

vp(dtη) +
∑

vp(η)≥0

vp(dpt)

= −
∑

vp(η)<0

vp(dtη) +
∑

vp(η)≥0

vp(dpt)

= −
∑

vp(η)<0

vp(dpη) +
∑
p∈C

vp(dpt)

≤ −
∑

vp(η)<0

(vp(η) − 1) + 2g − 2

≤ 2h(f) + 2g − 2.

If η is an S-integer, then the number of p such that vp(η) < 0 is at most |S|. Hence,

−
∑

vp(η)<0

(vp(η) − 1) ≤ h(f) + |S|,

which concludes the second assertion. �
Let η �= 0 ∈ K, the truncated counting function over S̄, be defined by

N̄S̄(η) :=
∑
p/∈S

min{1, v0
p(η)}.

We will need a stronger version of the truncated second main theorem as follows.

Lemma 18 (The truncated second main theorem). Let f be non-constant in K
and let u1, ..., un be n distinct elements in k . Then

(n − 1)h(f) ≤
n∑

i=1

N̄S̄(f − ui) + N̄S̄(f−1) −
∑

p∈CUS̄

vp(dpf) + 2g − 2 + |S|.

Here, CUS̄ = {p /∈ S | vp(f − ui) = 0 for each 1 ≤ i ≤ n}.

Proof. Since ui ∈ k,

dtf = dt(f − ui)(3.3)

and

dtf = −f2dtf
−1.(3.4)

We first consider when vp(f) < 0. In this case vp(f−1) = −vp(f) > 0 min and
vp(f − ui) = vp(f). From (3.4),

(f − u1) · · · (f − un)
dtf

=
f−1(f − u1) · · · (f − un)

−fdtf−1
=

f−1(f − u1) · · · (f − un)
−fdpf−1

dpt.

(3.5)
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It is easy to verify that

vp(fdpf−1) = vp(dpf−1/f−1) ≥ −min{1, vp(f−1)}.

Therefore, (3.5) yields
n∑

i=1

vp(f − ui) − vp(dtf) ≤ (n − 1)vp(f) + min{1, vp(f−1)} + vp(dpt).

Hence,

−(n − 1) min{0, vp(f)} ≤ −
n∑

i=1

vp(f − ui) + vp(dtf) + min{1, vp(f−1)} + vp(dpt).

(3.6)

We now consider when vp(f) ≥ 0. Let {π(1), ...., π(n)} = {1, ..., n} and

vp(f − uπ(1)) ≥ vp(f − uπ(2)) ≥ · · · ≥ vp(f − uπ(n)) ≥ 0.

It is easy to check that vp(f − uπ(2)) = · · · = vp(f − uπ(n)) = 0. From (3.3)

(f − u1) · · · (f − un)
dtf

=
(f − u1) · · · (f − un)

dt(f − uπ(1))

=
(f − uπ(2)) · · · (f − uπ(n))
(f − uπ(1))−1dp(f − uπ(1))

dpt.

Similarly,
n∑

i=1

vp(f − ui) − vp(dtf) ≤ min{1, vp(f − uπ(1))} + vp(dpt).

Therefore, we have the following two inequalities:

0 ≤ −
n∑

i=1

vp(f − ui) + vp(dtf) +
n∑

i=1

min{1, vp(f − ui)} + vp(dpt),(3.7)

0 ≤ −
n∑

i=1

vp(f − ui) + vp(dtf) + 1 + vp(dpt).(3.8)

Gathering (3.6) over all p such that vp(f) < 0, (3.7) over all other p such that
p /∈ S and vp(f − ui) > 0 for some 1 ≤ i ≤ n, and (3.8) over p such that p ∈ S
and vp(f) ≥ 0, it then yields

(n − 1)h(f) ≤−
n∑

i=1

∑
p∈C

vp(f − ui) +
∑

p/∈CUS̄

vp(dtf) +
n∑

i=1

N̄S̄(f − ui)(3.9)

+ N̄S̄(f−1) + |S| +
∑

p/∈CUS̄

vp(dpt).

Since any non-zero element in a function field has the same number of zeros and
poles counting multiplicity,

∑
p∈C vp(f − ui) = 0 and∑

p/∈CUS̄

vp(dtf) = −
∑

p∈CUS̄

vp(dtf) = −
∑

p∈CUS̄

vp(dpf) +
∑

p∈CUS̄

vp(dpt).
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Moreover, since
∑

p∈C vp(dpt) = 2g − 2, (3.9) yields

(n − 1)h(f) ≤
n∑

i=1

N̄S̄(f − ui) + N̄S̄(f−1) −
∑

p∈CUS̄

vp(dpf) + |S| + 2g − 2.

�

3.3. Proof of Theorem 15. Suppose from now on that f and g are two dis-
tinct non-constant functions in K satisfying (Cm0,S̄). Let P (X) be the polynomial
defined in Theorem 15,

F :=
1

P (f)
, G :=

1
P (g)

and

H :=
d2

t F

dtF
− d2

t G

dtG
.

We will conclude Theorem 15 by the following two lemmas.

Lemma 19. Suppose P (X) satisfies Hypothesis I. Let f and g be two distinct
non-constant functions in K satisfying (Cm0,S̄), and let H be as above. If H ≡ 0,
then

1
P (f)

=
c0

P (g)
+ c1,

for some c0 �= 0, and c1 ∈ k, and h(f) = h(g). Furthermore, suppose that (i) l ≥ 4,
(ii) l = 3 and max{m1, m2, m3} ≥ 2, or (iii) l = 2 and min{m1, m2} ≥ 2. Then
either c1 = 0 or the following hold:

(i) h(f) ≤ 10(2g − 2 + |S|);
(ii) n ≤ max{5, 4g + 2|S|}.

Lemma 20. Let P (X), f , g, and H be as in the previous lemma. Assume that
H �≡ 0.

(I) (a) If m0 = 1, then
(i) n ≤ max{2l + 13, 2l + 2 + 13g + 2|S|};
(ii) h(f) + h(g) ≤ 26g − 20 + 4|S|, if n ≥ 2l + 13.

(b) If m0 ≥ 2, then
(i) n ≤ max{2l + 7 + 4

m0−1 , 2l + 2 + (7 + 4
m0−1 )g + 2|S|}.

(ii) h(f) + h(g) ≤ (14 + 8
m0−1 )g− (8 + 8

m0−1 ) + 4|S|, if n ≥ 2l + 7 +
4

m0−1 .
(II) If we assume furthermore that f and g are S-integers, then

(a) If m0 = 1, then
(i) n ≤ max{2l + 6, 2l − 5 + 13g + 6|S|}.
(ii) h(f) + h(g) ≤ 26g − 20 + 12|S|, if n ≥ 2l + 6.

(b) If m0 ≥ 2, then
(i) n ≤ max{2l + 3 + 2

m0−1 , 2l − 2 − 2
m0−1 + (7 + 4

m0−1 )g + (3 +
2

m0−1 )|S|}.
(ii) h(f) + h(g) ≤ (14 + 8

m0−1 )g − (8 + 8
m0−1 ) + (6 + 4

m0−1 )|S|, if
n ≥ 2l + 3 + 2

m0−1 .
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Proof of Theorem 15. If H ≡ 0, then Lemma 19 implies
1

P (f)
=

c0

P (g)
+ c1,

for some c0 �= 0, and c1 ∈ k, and h(f) = h(g). If c1 �= 0, then (i) h(f) ≤
10(2g − 2 + |S|), and (ii) n ≤ max{5, 4g + 2|S|}. If c1 = 0, then P (g) = c0P (f).
From Theorem 2, we have h(f) ≤ 8g − 8, and h(f) ≤ 6g − 6 + 3|S| if f and g are
S-integers. Moreover, if we assume further that l ≥ 2g + 4 when g ≥ 2, then a
contradiction results by Theorem 1. It is then left to consider when H �≡ 0. In this
case, the theorem follows directly from Lemma 20. �

3.4. Proof of Lemma 19. Recall that

F :=
1

P (f)
, G :=

1
P (g)

, and H :=
d2

t F

dtF
− d2

t G

dtG
.

Let

Hp :=
d2
pF

dpF
−

d2
pG

dpG
.

By the chain rule,

Hp = H · dpt;(3.10)

by direct computation

Hp =
{P ′′(f)

P ′(f)
dpf − P ′′(g)

P ′(g)
dpg

}
− 2

{P ′(f)
P (f)

dpf − P ′(g)
P (g)

dpg
}

+
{d2

pf

dpf
−

d2
pg

dpg

}
.(3.11)

Proof of Lemma 19. If H ≡ 0, then d2
t FdtG = d2

t GdtF which implies that
dt(dtF/dtG) ≡ 0. Hence, dtF = c0dtG for some c0 ∈ k and then we have F =
c0G + c1 for some c1 ∈ k. Therefore, the first assertion is clear. We also note that
c0 �= 0 since f and g are not constant. The assertion h(f) = h(g) follows from the
following computation:

nh(f) = h(P (f)) = h(
1

P (f)
) = h(

c0

P (g)
+ c1) = h(

c0

P (g)
) = h(P (g)) = nh(g).

Assume that c1 �= 0. We consider the polynomial

Q(X) := P (X) +
c0

c1

and let
Q(X) = (X − e1)n1(X − e2)n2 . . . (X − er)nr

be its prime decomposition. Then Q′(X) = P ′(X) and

P (g)
c1P (f)

= (g − e1)n1(g − e2)n2 . . . (g − er)nr .(3.12)

Therefore, it is clear that r �= 1, otherwise l = 1. Since P (ei) = c0
c1

, Hypothesis I
implies that there exists at most one such that ei that is a zero of P ′(X) = Q′(X).
Clearly, if ei is not a zero of Q′(X), then ni = 1. After arranging the index, we
may assume that

n2 = n3 = · · · = nr = 1.
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We claim that r �= 2. If r = 2, then

Q(X) = (X − e1)n−1(X − e2).

This implies that

P ′(X) = Q′(X) = (X − e1)n−2(nX − e1 − (n − 1)e2)

which implies that l = 2 and min{m1, m2} = 1, contradicting our assumptions.
Therefore, we only need to consider when r ≥ 3. Observing form (3.12) and

using the fact that P (ei) �= 0, we see that if vp(g − ei) > 0, then vp(P (f)) =
−nivp(g − ei) < 0. Hence, vp(f) < 0 and vp(P (f)) = nvp(f). This gives

vp(g − ei) = − n

ni
vp(f).

Therefore,

v0
p(g − ei) ≥ nv̄0

p(g − ei), for 2 ≤ i ≤ r

since n2 = n3 = · · · = nr = 1. Since n1 + (r − 1) = n and r ≥ 3, it is easy to check
that n/n1 ≥ n/(n − 2) > 1. Therefore,

vp(g − e1) = − n

n1
vp(f) ≥ 2.

Then

v0
p(g − e1) ≥ 2v̄0

p(g − e1).

We now apply the truncated second main theorem:

(r − 2)h(g) ≤
r∑

i=1

N̄S̄(g − ei) + 2g − 2 + |S|

≤ 1
2
NS̄(g − e1) +

1
n

r∑
i=2

NS̄(g − ei) + 2g − 2 + |S|

≤ (
1
2

+
r − 1

n
)h(g) + 2g − 2 + |S|.

Then

(
n − 1

n
r − 5

2
+

1
n

)h(g) ≤ 2g − 2 + |S|.

Since r ≥ 3, it implies that

n − 4
2n

h(g) ≤ 2g − 2 + |S|.(3.13)

Since under the assumption n ≥ 5, this gives h(g) ≤ 10(2g−2+ |S|). Since g−e2 is
not constant, vp(g − e2) > 0 for some p. From the previous discussion, we see that
vp(g − e2) ≥ n. Then h(g − e2) ≥ n, since it equals the number of zeros counting
multiplicity. Therefore h(g) = h(g − e2) ≥ n. Then (3.13) implies that if n ≥ 5,
then

n ≤ 4g + 2|S|.

�
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3.5. Proof of Lemma 20.

Proposition 21. If vp(F ) = vp(G) = −1, then vp(Hp) > 0.

Proof. We can write F = t−1
p F̃ , G = t−1

p G̃ with vp(F̃ ) = vp(G̃) = 0. Then

Hp =
tpd

2
pF̃

tpdpF̃ − F̃
−

tpd
2
pG̃

tpdpG̃ − G̃
,

which has positive order at p. �

Proposition 22. v∞p (Hp) ≤ 1, for every p ∈ C.

Proof. This follows from the general fact that

vp(
dpη

η
) ≥ −1, for any η �= 0 ∈ K.

�

Recall that CUS̄ = {p /∈ S | vp(f − ui) = 0 for each 1 ≤ i ≤ n}. Let US̄ = {p /∈
S | vp(f − ui) > 0 for some 1 ≤ i ≤ n}. Let

εCUS̄
p :=

{
1 if p ∈ CUS̄ ,

0 otherwise,
and εUS̄

p :=

{
1 if p ∈ US̄ ,

0 otherwise.

Proposition 23. Suppose that f , g are two distinct non-constant functions satis-
fying (Cm0,S̄). Let p /∈ S.

(i) If m0 = ∞, then

v∞p (Hp) ≤
l∑

j=1

(v̄0
p(f − αj) + v̄0

p(g − αj)) +
{
v̄∞p (f) + v̄∞p (g)

}
+ εCUS̄

p

{
v̄p(dpf) + v̄p(dpg)

}
.

(ii) If 1 ≤ m0 < ∞, then

v∞p (Hp) ≤
l∑

j=1

(v̄0
p(f − αj) + v̄0

p(g − αj)) +
{
v̄∞p (f) + v̄∞p (g)

}

+ εCUS̄
p

{
v̄p(dpf) + v̄p(dpg)

}
+

ε
US̄
p

m′
0

{
vp(dpf) + vp(dpg)

}
,

where m′
0 := max{1, m0 − 1}.

Proof. From Proposition 22, v∞p (Hp) = 1 if vp(Hp) < 0. From (3.11), we see that
vp(Hp) < 0 only if (a) vp(f) < 0, vp(g) < 0, (b) vp(P ′(f)) > 0, vp(P ′(g)) > 0, (c)
vp(P (f)) > 0, vp(P (g)) > 0, or (d) vp(dpf) > 0, or vp(dpg) > 0. Therefore, the
first two terms in the inequalities of (i) and (ii) come out naturally from (a) and
(b). Note that

P ′(f)
P (f)

dpf − P ′(g)
P (g)

dpg = dp

(P (f)
P (g)

)
/
P (f)
P (g)

and
d2
pf

dpf
−

d2
pg

dpg
= dp

(dpf

dpg

)
/
dpf

dpg
.
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If m0 = ∞, then (Cm0,S̄) implies that vp(P (f)
P (g) ) = 0 and hence

vp(
P ′(f)
P (f)

dpf − P ′(g)
P (g)

dpg) ≥ 0.

Moreover, if vp(f −ui) > 0, then vp(g−uj) = vp(f −ui) > 0 for some j. Therefore,
vp(dpf) = vp(dpg) and hence

vp(
d2
pf

dpf
−

d2
pg

dpg
) ≥ 0.

Therefore, the last term of the inequality in (i) is only counted when p ∈ CUS̄ .
We now consider when m0 is a positive integer. If vp(P (f)) > 0, then

vp(f − ui) > 0 for some i and vp(g − uj) > 0 for some j by (Cm0,S̄). If vp(dpf) =
vp(dpg) = 0, then vp(f−ui) = 1 and vp(g−uj) = 1, which implies that vp(Hp) > 0
by Proposition 21. Therefore, we only need to consider when vp(dpf) > 1 or
vp(dpg) = 0. Without loss of generality, we only consider when vp(f − ui) ≥ 2.
In this case, vp(dpf) ≥ 1, and therefore (ii) holds automatically if m0 = 1, 2. As-
sume now that m0 ≥ 3. If 2 ≤ vp(f − ui) ≤ m0 and 0 < vp(g − uj) ≤ m0, then
the situation is the same as m0 = ∞. Otherwise, either vp(dpf) ≥ m0 − 1 or
vp(dpg) ≥ m0 − 1. This completes the proof of (ii). �

Proof of Lemma 20. By the second main theorem, we have

(n − 1)h(f) ≤
n∑

i=1

N̄S̄(f − ui) + N̄S̄(f−1) −
∑

p∈CUS̄

vp(dpf) + 2g − 2 + |S|.(3.14)

We first claim that
n∑

i=1

N̄S̄(f − ui) ≤
∑
p/∈S

v̄0
p(Hp) +

∑
p∈US̄

vp(dpf) + δ
∑

p∈US̄

vp(dpg),(3.15)

where δ = 1 if m0 = 1 and δ = 0 if m0 ≥ 2. We first consider the case when m0 ≥ 2.
Suppose that p /∈ S, and vp(f − ui) > 0 for some 1 ≤ i ≤ n which clearly implies
that vp(f − um) = 0 for all m �= i. If vp(f − ui) = 1, then vp(g − uj) = 1 for some
j since f and g satisfy (Cm0,S̄) and m0 ≥ 2. Hence, vp(P (f)) = vp(P (g)) = 1.
Proposition 21 implies that vp(Hp) > 0. If vp(f − ui) ≥ 2, then vp(dpf) ≥ 1.
Therefore, the assertion (3.15) holds. For the case m0 = 1, if vp(f − ui) > 0,
then we can only conclude that (a) vp(dpf) > 0 or vp(dpg) > 0, or (b) vp(dpf) =
vp(dpg) = 0. Similarly, the later case implies that vp(Hp) > 0. The assertion is
now clear.

Second, we claim that∑
p/∈S

v̄0
p(Hp) ≤ l(h(f) + h(g)) + N̄S̄(f−1) + N̄S̄(g−1)

+
∑

p∈CUS̄

{
vp(dpf) + vp(dpg)

}

+
1

m′
0

∑
p∈US̄

{
vp(dpf) + vp(dpg)

}
+ |S| + 3g.(3.16)
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We have∑
p/∈S

v̄0
p(Hp) ≤

∑
p/∈S

(v0
p(H) + vp(dpt))

≤
∑
p∈C

v∞p (H) +
∑
p/∈S

vp(dpt)

≤
∑
p/∈S

v∞p (H) + |S| + 3g (by Propositions 16 and 22)

≤
l∑

j=1

(N̄S̄(f − αj) + N̄S̄(g − αj)) + N̄S̄(f−1) + N̄S̄(g−1)

+
∑

p∈CUS̄

{
v̄p(dpf)+v̄p(dpg)

}

+
1

m′
0

∑
p∈US̄

{
vp(dpf)+vp(dpg)

}
+|S|+3g (by Proposition 23)

≤ l(h(f) + h(g)) + N̄S̄(f−1) + N̄S̄(g−1) +
∑

p∈CUS̄

{
v̄p(dpf) + v̄p(dpg)

}

+
1

m′
0

∑
p∈US̄

{
vp(dpf) + vp(dpg)

}
+ |S| + 3g.

By (3.14), (3.15) and (3.16), we have

(n − 1)h(f) ≤ l(h(f) + h(g)) + 2N̄S̄(f−1) + N̄S̄(g−1)

+
∑

p∈CUS̄

{
v̄p(dpf) + v̄p(dpg)

}
+ δ

∑
p∈US̄

vp(dpg)

+
1

m′
0

{ ∑
p∈US̄

vp(dpf) +
∑
p∈US̄

vp(dpg)
}

+ 5g − 2 + 2|S|.

Similarly, we have

(n − 1)h(g) ≤ l(h(f) + h(g)) + N̄S̄(f−1) + 2N̄S̄(g−1)

+
∑

p∈CUS̄

{
v̄p(dpf) + v̄p(dpg)

}
+ δ

∑
p∈US̄

vp(dpf)

+
1

m′
0

{ ∑
p∈US̄

vp(dpf) +
∑
p∈US̄

vp(dpg)
}

+ 5g − 2 + 2|S|.

Adding the two inequalities, we have

(n − 1)(h(f) + h(g)) ≤ 2l(h(f) + h(g)) + 3(N̄S̄(f−1) + N̄S̄(g−1))

(3.17)

+ (
2

m′
0

+ 1 + δ)
{ ∑

p/∈S

v0
p(dpf) +

∑
p/∈S

v0
p(dpg)

}
+ 10g − 4 + 4|S|

≤ (2l + 5 +
4

m′
0

+ 2δ)(h(f) + h(g))

+ (14 +
8

m′
0

+ 4δ)g − (8 +
8

m′
0

+ 4δ) + 4|S|,
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by Proposition 17. Therefore,

(n − 2l − 6 − 4
m′

0

− 2δ)(h(f) + h(g)) ≤ (14 +
8

m′
0

+ 4δ)g − (8 +
8

m′
0

+ 4δ) + 4|S|.

If n ≥ 2l + 7 + 4
m′

0
+ 2δ, then

h(f) + h(g) ≤ (14 +
8

m′
0

+ 4δ)g − (8 +
8

m′
0

+ 4δ) + 4|S|.

Since f and g are not constant, h(f) + h(g) ≥ 2. This inequality also gives

n ≤ 2l + 2 + (7 +
4

m′
0

+ 2δ)g + 2|S|.

For the case that f and g are S-integers, N̄S̄(f−1) = N̄S̄(g−1) ≤ |S|, and by
Proposition 17 we have∑

p/∈S

v0
p(dpf) +

∑
p/∈S

v0
p(dpg) ≤ h(f) + h(g) + 4g − 4 + 2|S|.

Then (3.17) yields

(n − 2l − 2 − 2
m′

0

− δ)(h(f) + h(g))

≤ (14 +
8

m′
0

+ 4δ)g − (8 +
8

m′
0

+ 4δ) + (6 +
4

m′
0

+ 2δ)|S|.

If n ≥ 2l + 3 + 2
m′

0
+ δ, then

h(f) + h(g) ≤ (14 +
8

m′
0

+ 4δ)g − (8 +
8

m′
0

+ 4δ) + (6 +
4

m′
0

+ 2δ)|S|.

Since f and g are not constant, h(f) + h(g) ≥ 2. This inequality also gives

n ≤ 2l − 2 − 2
m′

0

− δ + (7 +
4

m′
0

+ 2δ)g + (3 +
2

m′
0

+ δ)|S|.

�
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