Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Relative weak compactness of orbits in Banach spaces associated with locally compact groups


Authors: Colin C. Graham and Anthony T. M. Lau
Journal: Trans. Amer. Math. Soc. 359 (2007), 1129-1160
MSC (2000): Primary 43A15, 43A10; Secondary 46L10
DOI: https://doi.org/10.1090/S0002-9947-06-04039-6
Published electronically: September 11, 2006
MathSciNet review: 2262845
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study analogues of weak almost periodicity in Banach spaces on locally compact groups.

i) If $ \mu$ is a continous measure on the locally compact abelian group $ G$ and $ f\in L^\infty(\mu)$, then $ \{\gamma f:\gamma\in\widehat G\}$ is not relatively weakly compact.

ii) If $ G$ is a discrete abelian group and $ f\in \ell^\infty(G)\backslash C_o(G)$, then $ \{\gamma f:\gamma\in E\}$ is not relatively weakly compact if $ E\subset \widehat G$ has non-empty interior. That result will follow from an existence theorem for $ I_o$-sets, as follows.

iii) Every infinite subset of a discrete abelian group $ \Gamma$ contains an infinite $ I_o$-set such that for every neighbourhood $ U$ of the identity of $ \widehat\Gamma$ the interpolation (except at a finite subset depending on $ U$) can be done using at most 4 point masses.

iv) A new proof that $ B(G)\subset WAP(G)$ for abelian groups is given that identifies the weak limits of translates of Fourier-Stieltjes transforms.

v) Analogous results for $ C_o(G)$, $ A_p(G)$, and $ M_p(G)$ are given.

vi) Semigroup compactifications of groups are studied, both abelian and non-abelian: the weak* closure of $ \widehat G$ in $ L^\infty(\mu)$, for abelian $ G$; and when $ \rho$ is a continuous homomorphism of the locally compact group $ \Gamma$ into the unitary elements of a von Neumann algebra $ \mathcal{M}$, the weak* closure of $ \rho(\Gamma)$ is studied.


References [Enhancements On Off] (What's this?)

  • 1. L. N . Argabright and J. Gil de Lamadrid, Almost periodic measures, Memoirs Amer. Math. Soc. 85, no. 485 (1990). MR 0979431 (90k:43001)
  • 2. J. Berglund, H. Junghenn and Paul Milnes, Analysis on Semigroups, Wiley-Interscience-Canadian Math. Society, New York (1989). MR 0999922 (91b:43001)
  • 3. G. Brown, Riesz products and generalized characters, Proc. London Math. Soc. (3) 27 (1973), 484-504. MR 0372530 (51:8737)
  • 4. G. Brown, C. C. Graham, and W. Moran, Translation and symmetry in $ M(G)$, Symposia Mathematica XXII (1977), 371-392. MR 0487272 (58:6920)
  • 5. R. B. Burckel, Weakly almost periodic functions on semigroups, Gordon and Breach, New York, N. Y. (1970). MR 0263963 (41:8562)
  • 6. N. Dunford and and J. T. Schwartz, Linear operators, Part I: General Theory, Interscience Publishers, New York, N. Y. (1957). MR 1009162 (90g:47001a)
  • 7. C. Dunkl and D. E. Ramirez, Sections induced from weakly sequentially complete spaces, Studia Mathematica 59 (1973), 95-97. MR 0333591 (48:11916)
  • 8. M. Déchamps-Gondim, Ensembles de Sidon topologiques, Ann. Inst. de Fourier (Grenoble) 22 (fasc. 3) (1972), 51-79. MR 0340981 (49:5731)
  • 9. W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Transactions of the Amer. Math. Soc. 67 (1949), 217-240. MR 0036455 (12:112a)
  • 10. -, A note on the Fourier-Stieltjes transform, Proceedings of the Amer. Math. Soc. 6 (1953), 310-312. MR 0068030 (16:817b)
  • 11. R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer-Verlag, New York (1977). MR 0618663 (58:29760)
  • 12. P. Eymard, L'algébre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MR 0228628 (37:4208)
  • 13. J. Galindo and S. Hernández, The concept of boundedness and the Bohr compactification of a MAP abelian group, Fund. Math. 15, no. 3 (1999), 195-218. MR 1680642 (2001c:22001)
  • 14. C. C. Graham, Arens regularity for quotients of the Herz algebra $ A_p$, Bull. London Math. Soc. 34 (2002), 457-468. MR 1897425 (2003h:43003)
  • 15. C. C. Graham and O. Carruth McGehee, Essays in Commutative Harmonic Analysis Springer-Verlag, New York (1979). MR 0550606 (81d:43001)
  • 16. K. E. Hare and L. T. Ramsey, $ I_{0}$ sets in non-abelian groups, Math. Proc. Cambridge Phil. Soc. 135 (2003), 81-98. MR 1990833 (2004e:43011)
  • 17. S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions, I, Colloq. Math. 12 (1964), 23-29. MR 0167785 (29:5057)
  • 18. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, vol. I, Springer-Verlag, Berlin (1963). MR 0156915 (28:158)
  • 19. E. Hewitt and K. A. Ross Abstract Harmonic Analysis, vol. II, Springer-Verlag. Berlin (1970). MR 0262773 (41:7378)
  • 20. C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23, fasc. 3 (1973), 91-123. MR 0355482 (50:7956)
  • 21. C. Herz, Une generalization de la notion de transformée de Fourier-Stieltjes, Ann. Inst. Fourier (Grenoble) 24, fasc. 3 (1974), 145-157. MR 0425511 (54:13466)
  • 22. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, Berlin (1965). MR 0188387 (32:5826)
  • 23. B. Host, Le théorème des idempotents dans $ B(G)$, Bull. Soc. Math. France 114 (1986), 215-223. MR 0860817 (88b:43003)
  • 24. B. Host, J.-F. Mela, and F. Parreau, Analyse Harmonique des Measures, Société Mathématique de France, Paris (1986). MR 0839692 (88a:43005)
  • 25. B. Host, J.-F. Mela, and F. Parreau, Non-singular transformations and spectral analysis of measures, Bull. Math. Soc. France (1991), 33-90. MR 1101939 (93d:43002)
  • 26. K. Kunen and W. Rudin, Lacunarity and the Bohr topology, Math. Proc. Camb. Phil. Soc. 126 (1999), 117-137. MR 1681658 (2000e:43003)
  • 27. A. T.-M. Lau and J. C. S. Wong, Weakly almost periodic elements in $ L^\infty(G)$ of a locally compact group, Proceedings of the Amer. Math. Soc. 107 (1989), 1031-1036. MR 0991701 (90m:43006)
  • 28. J. M. López and K. A. Ross, Sidon Sets, Marcel Dekker, New York (1975). MR 0440298 (55:13173)
  • 29. J.-F. Méla, Suites lacunaires de Sidon, ensembles propre et points exceptionnels, Ann. Inst. de Fourier (Grenoble) 14 (fasc. 2) (1964), 533-538. MR 0178308 (31:2566)
  • 30. -, Sur certains ensembles exceptionnels en analyse de Fourier, Ann. Inst. de Fourier (Grenoble) 18 (1968), 32-71. MR 0412739 (54:860)
  • 31. J. R. Ringrose, Lectures on the trace in a finite von Neumann algebra, Lectures on operator algebras, Lecture Notes in Mathematics #247, Springer-Verlag (1972), 309-354. MR 0361816 (50:14261)
  • 32. W. Rudin, Fourier Analysis on Groups, Wiley Interscience, New York (1962). MR 0152834 (27:2808)
  • 33. W. Ruppert, Compact semitopological semigroups: an intrinsic theory, Lecture Notes in Mathematics #1079, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1984). MR 0762985 (86e:22001)
  • 34. S. Sakai, $ C^*$-algebras and $ W^*$-algebras, Springer-Verlag, New York, Heidelberg, Berlin (1971). MR 0442701 (56:1082)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 43A15, 43A10, 46L10

Retrieve articles in all journals with MSC (2000): 43A15, 43A10, 46L10


Additional Information

Colin C. Graham
Affiliation: Department of Mathematics, University of British Columbia, RR #1 – D-156, Bowen Island, British Columbia, Canada V0N 1G0
Email: ccgraham@alum.mit.edu

Anthony T. M. Lau
Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Email: tlau@math.ualberta.ca

DOI: https://doi.org/10.1090/S0002-9947-06-04039-6
Keywords: Almost periodic functions, $I_o$-sets, locally compact abelian groups, $p$-multipliers, weak closure of the characters, weak and weak* closures of translates, weakly almost periodic functions
Received by editor(s): January 23, 2003
Received by editor(s) in revised form: December 8, 2004
Published electronically: September 11, 2006
Additional Notes: Both authors were partially supported by NSERC grants
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society