Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Algebraic independence in the Grothendieck ring of varieties

Author: N. Naumann
Journal: Trans. Amer. Math. Soc. 359 (2007), 1653-1683
MSC (2000): Primary 14A10
Published electronically: September 19, 2006
MathSciNet review: 2272145
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give sufficient cohomological criteria for the classes of given varieties over a field $ k$ to be algebraically independent in the Grothendieck ring of varieties over $ k$ and construct some examples.

References [Enhancements On Off] (What's this?)

  • [Algèbre] N. Bourbaki, Éléments de mathématique. 23. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre 8: Modules et anneaux semi-simples, Actualités Sci. Ind. no. 1261, Hermann, Paris, 1958 (French). MR 0098114
  • [A] Yves André, Motifs de dimension finie (d’après S.-I. Kimura, P. O’Sullivan…), Astérisque 299 (2005), Exp. No. 929, viii, 115–145 (French, with French summary). Séminaire Bourbaki. Vol. 2003/2004. MR 2167204
  • [Bi] Franziska Bittner, The universal Euler characteristic for varieties of characteristic zero, Compos. Math. 140 (2004), no. 4, 1011–1032. MR 2059227, 10.1112/S0010437X03000617
  • [Bo] Armand Borel, Linear algebraic groups, Notes taken by Hyman Bass, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0251042
  • [BDS] Irene I. Bouw, Claus Diem, and Jasper Scholten, Ordinary elliptic curves of high rank over \overline{𝔽}_{𝕡}(𝕩) with constant 𝕛-invariant, Manuscripta Math. 114 (2004), no. 4, 487–501. MR 2081948, 10.1007/s00229-004-0476-7
  • [DH] H. Davenport, H. Hasse, Die Nullstellen der Kongruenzzetafunktion in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1935), 151-182.
  • [D1] Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 0498551
  • [D2] P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195 (French). MR 1106898
  • [D3] Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520
  • [DMOS] Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325
  • [DG] Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656
  • [G] Pierre Colmez and Jean-Pierre Serre (eds.), Correspondance Grothendieck-Serre, Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 2, Société Mathématique de France, Paris, 2001 (French). MR 1942134
  • [H] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • [J] Uwe Jannsen, Mixed motives and algebraic 𝐾-theory, Lecture Notes in Mathematics, vol. 1400, Springer-Verlag, Berlin, 1990. With appendices by S. Bloch and C. Schoen. MR 1043451
  • [K] M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein-series for Kac-Moody groups, math.AG/0001005.
  • [Ka] Nicholas M. Katz, Review of 𝑙-adic cohomology, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 21–30. MR 1265520
  • [Ko] János Kollár, Conics in the Grothendieck ring, Adv. Math. 198 (2005), no. 1, 27–35. MR 2183248, 10.1016/j.aim.2005.01.004
  • [LL1] Michael Larsen and Valery A. Lunts, Rationality criteria for motivic zeta functions, Compos. Math. 140 (2004), no. 6, 1537–1560. MR 2098401, 10.1112/S0010437X04000764
  • [LL2] Michael Larsen and Valery A. Lunts, Motivic measures and stable birational geometry, Mosc. Math. J. 3 (2003), no. 1, 85–95, 259 (English, with English and Russian summaries). MR 1996804
  • [Lo] Eduard Looijenga, Motivic measures, Astérisque 276 (2002), 267–297. Séminaire Bourbaki, Vol. 1999/2000. MR 1886763
  • [Ma] Ju. I. Manin, Theory of commutative formal groups over fields of finite characteristic, Uspehi Mat. Nauk 18 (1963), no. 6 (114), 3–90 (Russian). MR 0157972
  • [Mi1] J. S. Milne, Motives over finite fields, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 401–459. MR 1265538
  • [Mi2] James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
  • [P] Bjorn Poonen, The Grothendieck ring of varieties is not a domain, Math. Res. Lett. 9 (2002), no. 4, 493–497. MR 1928868, 10.4310/MRL.2002.v9.n4.a8
  • [Q] Daniel Quillen, Higher algebraic 𝐾-theory. I, Algebraic 𝐾-theory, I: Higher 𝐾-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341. MR 0338129
  • [R] Kenneth A. Ribet, Galois action on division points of Abelian varieties with real multiplications, Amer. J. Math. 98 (1976), no. 3, 751–804. MR 0457455
  • [RS] J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 0137689
  • [S1] Jean-Pierre Serre, Groupes de Grothendieck des schémas en groupes réductifs déployés, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 37–52 (French). MR 0231831
  • [S2] Jean-Pierre Serre, Un exemple de série de Poincaré non rationnelle, Nederl. Akad. Wetensch. Indag. Math. 41 (1979), no. 4, 469–471 (French). MR 554140
  • [S3] Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR 0450380
  • [S4] Jean-Pierre Serre, Groupes algébriques associés aux modules de Hodge-Tate, Journées de Géométrie Algébrique de Rennes. (Rennes, 1978) Astérisque, vol. 65, Soc. Math. France, Paris, 1979, pp. 155–188 (French). MR 563476
  • [S5] Jean-Pierre Serre, Œuvres. Collected papers. IV, Springer-Verlag, Berlin, 2000 (French). 1985–1998. MR 1730973
  • [T] John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144. MR 0206004
  • [Y] Toshihiko Yamada, On the Davenport-Hasse curves, J. Math. Soc. Japan 20 (1968), 403–410. MR 0225782

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14A10

Retrieve articles in all journals with MSC (2000): 14A10

Additional Information

N. Naumann
Affiliation: NWF I- Mathematik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany

Keywords: Grothendieck ring of varieties, motivic measure
Received by editor(s): July 28, 2004
Received by editor(s) in revised form: January 20, 2005
Published electronically: September 19, 2006
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.