Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Algebraic independence in the Grothendieck ring of varieties


Author: N. Naumann
Journal: Trans. Amer. Math. Soc. 359 (2007), 1653-1683
MSC (2000): Primary 14A10
DOI: https://doi.org/10.1090/S0002-9947-06-03975-4
Published electronically: September 19, 2006
MathSciNet review: 2272145
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give sufficient cohomological criteria for the classes of given varieties over a field $ k$ to be algebraically independent in the Grothendieck ring of varieties over $ k$ and construct some examples.


References [Enhancements On Off] (What's this?)

  • [Algèbre] N. Bourbaki, Algèbre, Chapitre 8, Hermann, Paris, 1958. MR 0098114 (20:4576)
  • [A] Y. André, Motifs de dimensione finie, Séminaire Bourbaki, 56ème année, 2003-2004, no 929. MR 2167204
  • [Bi] F. Bittner, The universal Euler characteristic for varieties of characteristic zero, Compos. Math. 140 (2004), no. 4, 1011-1032. MR 2059227 (2005d:14031)
  • [Bo] A. Borel, Linear algebraic groups, W.A. Benjamin, Inc., New York, Amsterdam, 1969. MR 0251042 (40:4273)
  • [BDS] I. Bouw, C. Diem, J. Scholten, Ordinary elliptic curves of high rank over $ \overline{\mathbb{F}_p}(x)$ with constant $ j$-invariant, Manuscripta Math. 114 (2004), 487-501. MR 2081948 (2005e:11069)
  • [DH] H. Davenport, H. Hasse, Die Nullstellen der Kongruenzzetafunktion in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1935), 151-182.
  • [D1] P. Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. no. 40 (1971), 5-57. MR 0498551 (58:16653a)
  • [D2] P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, 111-195, Progr. Math. 87, Birkhäuser, Boston, 1990. MR 1106898 (92d:14002)
  • [D3] P. Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. no. 52 (1980), 137-252. MR 0601520 (83c:14017)
  • [DMOS] P. Deligne, J. Milne, A. Ogus, K. Shih, Hodge cycles, Motives and Shimura Varieties, LNM 900, Springer, 1989, 101-228. MR 0654325 (84m:14046)
  • [DG] M. Demazure, P. Gabriel, Groupes algébriques. Tome I, North-Holland Publishing Co., Amsterdam, 1970. MR 0302656 (46:1800)
  • [G] A. Grothendieck, Letter to J-P. Serre (dated 16.8.1964), in Correspondance Grothendieck-Serre, P. Colmez, J-P. Serre (eds.), Documents Mathématiques, Soc. Math. France, 2001. MR 1942134 (2003k:14002)
  • [H] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer, New York, 1977. MR 0463157 (57:3116)
  • [J] U. Jannsen, Mixed motives and algebraic $ K$-theory, LNM 1400, Springer, 1990. MR 1043451 (91g:14008)
  • [K] M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein-series for Kac-Moody groups, math.AG/0001005.
  • [Ka] N. Katz, Review of $ l$-adic cohomology, in Motives, Proc. Symp. Pure Math. 55, part 1, 21-30. MR 1265520 (95j:14021)
  • [Ko] J. Kollár, Conics in the Grothendieck ring, Adv. Math. 198 (2005), 27-35.MR 2183248
  • [LL1] M. Larsen, V. Lunts, Rationality criteria for motivic zeta functions, Compos. Math. 140, no. 6 (2004), 1537-1560. MR 2098401 (2005k:14045)
  • [LL2] M. Larsen, V. Lunts, Motivic measures and stable birational geometry, Mosc. Math. J. 3, no. 1 (2003), 85-95. MR 1996804 (2005a:14026)
  • [Lo] E. Looijenga, Motivic measures, Séminaire Bourbaki, Vol. 1999/2000. Astérisque No. 276 (2002), 267-297. MR 1886763 (2003k:14010)
  • [Ma] J. Manin, Theory of commutative formal groups over fields of finite characteristic, Uspeki Mat. Nauk 18 (1963), no. 6, 3-90. MR 0157972 (28:1200)
  • [Mi1] J. Milne, Motives over finite fields, in Motives, Proc. Symp. Pure Math. 55, part 1, 401-459. MR 1265538 (95g:11053)
  • [Mi2] J. Milne, Étale cohomology, Princeton University Press, Princeton N.J., 1980. MR 0559531 (81j:14002)
  • [P] B. Poonen, The Grothendieck ring of varieties is not a domain, Math. Res. Letters 9 (2002), no. 4, 493-497. MR 1928868 (2003g:14010)
  • [Q] D. Quillen, Higher algebraic $ K$-theory. I, LNM 341, 85-147, Springer, Berlin, 1973. MR 0338129 (49:2895)
  • [R] K. Ribet, Galois action on division points of Abelian varieties with real multiplications, Amer. J. Math. 98 (1976), no. 3, 751-804. MR 0457455 (56:15660)
  • [RS] J. Rosser, L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. MR 0137689 (25:1139)
  • [S1] J-P. Serre, Groupes de Grothendieck des schémas en groupes réductifs déployés, Inst. Hautes Études Sci. Publ. Math. no. 34 (1968), 37-52. MR 0231831 (38:159)
  • [S2] J-P. Serre, Un exemple de série de Poincaré non rationnelle, Proc. Nederland Acad. Sci. 82 (1979), 469-471. MR 0554140 (81a:55014)
  • [S3] J-P. Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer, New York, 1977. MR 0450380 (56:8675)
  • [S4] J-P. Serre, Groupes algébriques associés aux modules de Hodge-Tate, Journées de Géométrie Algébriques de Rennes, Vol. III, 155-188, Astérisque 65, Soc. Math. France, 1979. MR 0563476 (81j:14027)
  • [S5] J-P. Serre, Letter to K. Ribet dated 1.1.1981 and 29.1.1981 in Collected Papers IV, no. 133, Springer, 2003. MR 1730973 (2001e:01037)
  • [T] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144. MR 0206004 (34:5829)
  • [Y] T. Yamada, On the Davenport-Hasse curves, J. Math. Soc. Japan, Vol. 20, nos. 1-2 (1968), 403-410. MR 0225782 (37:1375)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14A10

Retrieve articles in all journals with MSC (2000): 14A10


Additional Information

N. Naumann
Affiliation: NWF I- Mathematik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany

DOI: https://doi.org/10.1090/S0002-9947-06-03975-4
Keywords: Grothendieck ring of varieties, motivic measure
Received by editor(s): July 28, 2004
Received by editor(s) in revised form: January 20, 2005
Published electronically: September 19, 2006
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society