A complex Frobenius theorem, multiplier ideal sheaves and Hermitian-Einstein metrics on stable bundles

Author:
Ben Weinkove

Journal:
Trans. Amer. Math. Soc. **359** (2007), 1577-1592

MSC (2000):
Primary 53C07

Published electronically:
October 16, 2006

MathSciNet review:
2272141

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A complex Frobenius theorem is proved for subsheaves of a holomorphic vector bundle satisfying a finite generation condition and a differential inclusion relation. A notion of `multiplier ideal sheaf' for a sequence of Hermitian metrics is defined. The complex Frobenius theorem is applied to the multiplier ideal sheaf of a sequence of metrics along Donaldson's heat flow to give a construction of the destabilizing subsheaf appearing in the Donaldson-Uhlenbeck-Yau theorem, in the case of algebraic surfaces.

**[Bo]**Enrico Bombieri,*Algebraic values of meromorphic maps*, Invent. Math.**10**(1970), 267–287. MR**0306201****[DT]**Paolo De Bartolomeis and Gang Tian,*Stability of complex vector bundles*, J. Differential Geom.**43**(1996), no. 2, 231–275. MR**1424426****[DC]**Mark Andrea A. de Cataldo,*Singular Hermitian metrics on vector bundles*, J. Reine Angew. Math.**502**(1998), 93–122. MR**1647555**, 10.1515/crll.1998.091**[De]**Jean-Pierre Demailly,*Effective bounds for very ample line bundles*, Invent. Math.**124**(1996), no. 1-3, 243–261. MR**1369417**, 10.1007/s002220050052**[DeKo]**Jean-Pierre Demailly and János Kollár,*Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds*, Ann. Sci. École Norm. Sup. (4)**34**(2001), no. 4, 525–556 (English, with English and French summaries). MR**1852009**, 10.1016/S0012-9593(01)01069-2**[D1]**S. K. Donaldson,*A new proof of a theorem of Narasimhan and Seshadri*, J. Differential Geom.**18**(1983), no. 2, 269–277. MR**710055****[D2]**S. K. Donaldson,*Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles*, Proc. London Math. Soc. (3)**50**(1985), no. 1, 1–26. MR**765366**, 10.1112/plms/s3-50.1.1**[DoKr]**S. K. Donaldson and P. B. Kronheimer,*The geometry of four-manifolds*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1990. Oxford Science Publications. MR**1079726****[HT]**Min-Chun Hong and Gang Tian,*Asymptotical behaviour of the Yang-Mills flow and singular Yang-Mills connections*, Math. Ann.**330**(2004), no. 3, 441–472. MR**2099188**, 10.1007/s00208-004-0539-9**[Ho]**Lars Hörmander,*An introduction to complex analysis in several variables*, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR**1045639****[Ko]**J. J. Kohn,*Subellipticity of the ∂-Neumann problem on pseudo-convex domains: sufficient conditions*, Acta Math.**142**(1979), no. 1-2, 79–122. MR**512213**, 10.1007/BF02395058**[KM]**J.-L. Koszul and B. Malgrange,*Sur certaines structures fibrées complexes*, Arch. Math. (Basel)**9**(1958), 102–109 (French). MR**0131882****[Ma]**B. Malgrange,*Ideals of differentiable functions*, Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967. MR**0212575****[Na]**Alan Michael Nadel,*Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature*, Ann. of Math. (2)**132**(1990), no. 3, 549–596. MR**1078269**, 10.2307/1971429**[NS]**M. S. Narasimhan and C. S. Seshadri,*Stable and unitary vector bundles on a compact Riemann surface*, Ann. of Math. (2)**82**(1965), 540–567. MR**0184252****[NN]**A. Newlander and L. Nirenberg,*Complex analytic coordinates in almost complex manifolds*, Ann. of Math. (2)**65**(1957), 391–404. MR**0088770****[Pa]**Pali, N.*Faisceaux -cohérents sure les variétés complexes*, preprint, arXiv: math.AG/0301146 (2003).**[Si]**Carlos T. Simpson,*Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization*, J. Amer. Math. Soc.**1**(1988), no. 4, 867–918. MR**944577**, 10.1090/S0894-0347-1988-0944577-9**[S1]**Yum Tong Siu,*Analyticity of sets associated to Lelong numbers and the extension of closed positive currents*, Invent. Math.**27**(1974), 53–156. MR**0352516****[S2]**Yum Tong Siu,*Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics*, DMV Seminar, vol. 8, Birkhäuser Verlag, Basel, 1987. MR**904673****[S3]**Yum Tong Siu,*An effective Matsusaka big theorem*, Ann. Inst. Fourier (Grenoble)**43**(1993), no. 5, 1387–1405 (English, with English and French summaries). MR**1275204****[S4]**Yum-Tong Siu,*Effective very ampleness*, Invent. Math.**124**(1996), no. 1-3, 563–571. MR**1369428**, 10.1007/s002220050063**[S5]**Siu, Y.-T.*Multiplier ideal sheaves in algebraic and complex geometry*, Samuel Eilenberg Lectures at Columbia University (2002), unpublished.**[Sk]**Henri Skoda,*Sous-ensembles analytiques d’ordre fini ou infini dans 𝐶ⁿ*, Bull. Soc. Math. France**100**(1972), 353–408 (French). MR**0352517****[Uh]**Karen K. Uhlenbeck,*Connections with 𝐿^{𝑝} bounds on curvature*, Comm. Math. Phys.**83**(1982), no. 1, 31–42. MR**648356****[UY]**K. Uhlenbeck and S.-T. Yau,*On the existence of Hermitian-Yang-Mills connections in stable vector bundles*, Comm. Pure Appl. Math.**39**(1986), no. S, suppl., S257–S293. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR**861491**, 10.1002/cpa.3160390714**[We]**Weinkove, B.*The J-flow, the Mabuchi energy, the Yang-Mills flow and multiplier ideal sheaves*, Ph.D. thesis, Columbia University, 2004.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
53C07

Retrieve articles in all journals with MSC (2000): 53C07

Additional Information

**Ben Weinkove**

Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

DOI:
http://dx.doi.org/10.1090/S0002-9947-06-03985-7

Received by editor(s):
January 18, 2005

Published electronically:
October 16, 2006

Additional Notes:
This work was carried out while the author was a Ph.D. student at Columbia University, supported by a graduate fellowship.

Article copyright:
© Copyright 2006
American Mathematical Society