Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Lusternik-Schnirelmann category of $ \mathbf{Spin}{(9)}$


Authors: Norio Iwase and Akira Kono
Journal: Trans. Amer. Math. Soc. 359 (2007), 1517-1526
MSC (2000): Primary 55M30; Secondary 55N20, 57T30
DOI: https://doi.org/10.1090/S0002-9947-06-04120-1
Published electronically: October 17, 2006
MathSciNet review: 2272137
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: First we give an upper bound of $ \mathrm{cat}{(E)}$, the L-S category of a principal $ G$-bundle $ E$ for a connected compact group $ G$ with a characteristic map $ \alpha: {\Sigma}V \to G$. Assume that there is a cone-decomposition $ \{F_{i}\,\vert\,0 \leq i\leq m\}$ of $ G$ in the sense of Ganea that is compatible with multiplication. Then we have $ \mathrm{cat}{(E)} \leq\mathrm{Max}(m{+}n,m{+}2)$ for $ n \geq 1$, if $ \alpha$ is compressible into $ F_{n} \subseteq F_{m}\simeq G$ with trivial higher Hopf invariant $ H_n(\alpha)$. Second, we introduce a new computable lower bound, $ \mathrm{Mwgt} {(X; {\mathbb{F}_2}})$ for $ \mathrm{cat}({X})$. The two new estimates imply $ \mathrm{cat}({\mathbf{Spin}{(9))}}=\mathrm{Mwgt} ({\mathbf{Spin}{(9)};{\mathbb{F}_2}}) = 8 > 6 =\mathrm{wgt}({\mathbf{Spin}{(9)};{\mathbb{F}_2}})$, where $ (\mathrm{wgt}{-;R})$ is a category weight due to Rudyak and Strom.


References [Enhancements On Off] (What's this?)

  • 1. A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes (French), Amer. J. Math. 76 (1954), 273-342.MR 0064056 (16:219b)
  • 2. R. Bott, The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61.MR 0102803 (21:1589)
  • 3. E. Fadell and S. Husseini, Category weight and Steenrod operations, Papers in honor of José Adem (Spanish), Bol. Soc. Mat. Mexicana 37 (1992), 151-161.MR 1317569 (95m:55007)
  • 4. T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois. J. Math. 11 (1967), 417-427. MR 0229240 (37:4814)
  • 5. H. Hamanaka and A. Kono, Homotopy-commutativity in spinor groups, J. Math. Kyoto Univ. 40 (2000), 389-405. MR 1787878 (2001k:57044)
  • 6. K. A. Hardie, A note on fibrations and category, Michigan Math. J. 17 (1970), 351-352.MR 0283795 (44:1025)
  • 7. K. Ishitoya, A. Kono and H. Toda, Hopf algebra structure of mod $ 2$ cohomology of simple Lie groups, Publ. Res. Inst. Math. Sci. 12 (1976/77), 141-167. MR 0415651 (54:3731)
  • 8. N. Iwase, On the $ K$-ring structure of $ X$-projective $ n$-space, Mem. Fac. Sci. Kyushu Univ. Ser. A Math. 38 (1984), 285-297. MR 0760190 (86g:55023)
  • 9. N. Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, Bull. London Math. Soc. 30 (1998), 623-634. MR 1642747 (99j:55003)
  • 10. N. Iwase, $ A_\infty$-method in Lusternik-Schnirelmann category, Topology 41 (2002), 695-723. MR 1905835 (2003h:55004)
  • 11. N. Iwase, Lusternik-Schnirelmann category of a sphere-bundle over a sphere, Topology 42 (2003), 701-713. MR 1953245 (2004c:55030)
  • 12. N. Iwase, The Ganea conjecture and recent developments on the Lusternik-Schnirelmann category (Japanese), Sugaku 56 (2004), 281-296.MR 2086116 (2005e:55005)
  • 13. N. Iwase and M. Mimura, Higher homotopy associativity, Algebraic Topology (Arcata, 1986), 193-220, Lecture Notes in Math. 1370, Springer, Berlin, 1989.MR 1000378 (90f:55017)
  • 14. N. Iwase, M. Mimura, L-S categories of simply-connected compact simple Lie groups of low rank, Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), 199-212, Progr. Math., 215, Birkhäuser, Basel, 2004.MR 2039767 (2005a:55001)
  • 15. N. Iwase, M. Mimura, T. Nishimoto, On the cellular decomposition and the Lusternik-Schnirelmann category of $ \mathrm{Spin}(7)$, Topology Appl., 133 (2003), 1-14.MR 1996457 (2005b:55002)
  • 16. N. Iwase, M. Mimura, T. Nishimoto, L-S categories of non-simply-connected compact simple Lie groups, Topology Appl. 150 (2005), 111-123.MR 2133672 (2005m:55004)
  • 17. A. Kono and K. Kozima, The adjoint action of a Lie group on the space of loops, J. Math. Soc. Japan 45 (1993), 495-510. MR 1219882 (94h:57053)
  • 18. Y. B. Rudyak, On category weight and its applications, Topology 38 (1999), 37-55.MR 1644063 (99f:55007)
  • 19. J. D. Stasheff, Homotopy associativity of H-spaces, I, II, Trans. Amer. Math. Soc. 108 (1963), 275-292, 293-312.MR 0158400 (28:1623)
  • 20. J. Strom, Essential category weight and phantom maps, Cohomological methods in homotopy theory (Bellaterra, 1998), 409-415, Progr. Math., 196, Birkhäuser, Basel, 2001. MR 1851266 (2002f:55018)
  • 21. K. Varadarajan, On fibrations and category, Math. Z. 88 (1965), 267-273.MR 0180969 (31:5199)
  • 22. G. W. Whitehead, ``Elements of Homotopy Theory'', Graduate Texts in Mathematics, 61, Springer-Verlag, Berlin, 1978. MR 0516508 (80b:55001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 55M30, 55N20, 57T30

Retrieve articles in all journals with MSC (2000): 55M30, 55N20, 57T30


Additional Information

Norio Iwase
Affiliation: Faculty of Mathematics, Kyushu University, Fukuoka 810-8560, Japan
Email: iwase@math.kyushu-u.ac.jp

Akira Kono
Affiliation: Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 607-8502, Japan
Email: kono@kusm.kyoto-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-06-04120-1
Keywords: Lusternik-Schnirelmann category, spinor groups, partial products.
Received by editor(s): January 7, 2005
Published electronically: October 17, 2006
Additional Notes: The first author was supported by the Grant-in-Aid for Scientific Research #15340025 from the Japan Society for the Promotion of Science.
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society