Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Values of Gauss maps of complete minimal surfaces in $ {\mathbb{R}}^{m}$ on annular ends

Authors: Lu Jin and Min Ru
Journal: Trans. Amer. Math. Soc. 359 (2007), 1547-1553
MSC (2000): Primary 53C42; Secondary 32H30
Published electronically: September 12, 2006
MathSciNet review: 2272139
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a complete minimal surface in $ {\mathbb{R}}^{m}$ and let $ A$ be an annular end of $ M$ which is conformal to $ \{z~\vert~ 0 < 1/r<\vert z\vert<r\}$, where $ z$ is the conformal coordinate. Let $ G$ be the generalized Gauss map of $ M$. We show that $ G(A)$ must intersect every hyperplane in $ {\mathbb{P}}^{m-1}({\mathbb{C}})$, with the possible exception of $ m(m+1)/2$ hyperplanes in general position.

References [Enhancements On Off] (What's this?)

  • [A] Ahlfors, L.: The theory of meromorphic curves. Acta. Soc. Sci. Fenn. Nova Ser. A 3(4), 171-183 (1941). MR 0004309 (2:357b)
  • [Ca] Cartan, H.: Sur les zeros des combinaisions linearires de $ p$ fonctions holomorpes donnees. Mathematica (Cluj) 7, 80-103 (1933).
  • [Ch] Chen, W.: Cartan conjecture: Defect relation for meromorphic maps from parabolic manifold to projective space, Thesis, University of Notre Dame, 1987.
  • [CO] Chern, S.S. and Osserman, R.: Complete minimal surface in Euclidean $ n$-space, J. Analyse Math., 19, 15-34 (1967). MR 0226514 (37:2103)
  • [CG] Cowen, M.J. and Griffiths, P.A.: Holomorphic curves and metric of negative curvature, J. Analyse Math., 29, 93-153 (1976). MR 0508156 (58:22677)
  • [F1] Fujimoto, H.: On the number of exceptional values of the Gauss map of minimal surfaces, J. Math. Soc. Japan, 49, 235-385 (1988). MR 0930599 (89b:53013)
  • [F2] Fujimoto, H.: Modified defect relations for the Gauss map of minimal surfaces, II, J. Differential Geometry, 31, 365-385 (1990). MR 1037406 (91a:53011)
  • [H] Huber, A.: On subharmonic functions and differential geometry in the large, Comm. Math. Helv, 32, 13-72 (1957). MR 0094452 (20:970)
  • [K] Kao, S.J.: On values of Gauss maps of complete minimal surfaces on annular ends, Math. Ann., 315-318 (1991). MR 1129370 (92k:53018)
  • [N] Nochka, E.I.: On the theory of meromorphic functions, Soviet. Math. Dokl., 27(2), 377-381 (1983). MR 0701289 (85i:32038)
  • [O] Osserman, R.: A survey of minimal surfaces, 2nd ed., Dover, New York, 1986. MR 0852409 (87j:53012)
  • [OR] Osserman, R. and Ru, M.: An estimate for the Gauss curvature on minimal surfaces in $ {\mathbb{R}}^{m}$ whose Gauss map omits a set of hyperplanes, J. Diff. Geometry, 46, 578-593 (1997). MR 1484891 (98k:53014)
  • [R] Ru, M.: On the Gauss map of minimal surfaces immersed in $ {\mathbb{R}}^{n}$, J. Diff. Geometry, 34, 411-423 (1991). MR 1131437 (92k:53117)
  • [Sha] Shabat, B.V.: Distribution of values of holomorphic mappings. Translations of Mathematical Monographs, Vol. 61, American Math. Soc., 1985. MR 0807367 (86k:32023)
  • [St] Stoll, W.: The Ahlfors-Weyl theory of meromorphic maps on parabolic manifolds, Lecture Notes in Math., Vol. 981, Springer, Berlin, 101-219 (1981). MR 0699135 (85c:32045)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53C42, 32H30

Retrieve articles in all journals with MSC (2000): 53C42, 32H30

Additional Information

Lu Jin
Affiliation: Department of Mathematics, Fudan University, Shanghai, People’s Republic of China

Min Ru
Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204

Received by editor(s): March 9, 2004
Received by editor(s) in revised form: January 14, 2005
Published electronically: September 12, 2006
Additional Notes: The first author was supported by the National Natural Science Foundation of China (No. 10271029). The second author was supported in part by NSA under grant number H98230-05-1-0042.
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society