Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

All $ p$-local finite groups of rank two for odd prime $ p$


Authors: Antonio Díaz, Albert Ruiz and Antonio Viruel
Journal: Trans. Amer. Math. Soc. 359 (2007), 1725-1764
MSC (2000): Primary 55R35, 20D20
DOI: https://doi.org/10.1090/S0002-9947-06-04367-4
Published electronically: November 22, 2006
MathSciNet review: 2272147
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we give a classification of the rank two $ p$-local finite groups for odd $ p$. This study requires the analysis of the possible saturated fusion systems in terms of the outer automorphism group of the possible $ \mathcal{F}$-radical subgroups. Also, for each case in the classification, either we give a finite group with the corresponding fusion system or we check that it corresponds to an exotic $ p$-local finite group, getting some new examples of these for $ p=3$.


References [Enhancements On Off] (What's this?)

  • 1. A. Adem, J.F. Davis, O. Unlu, Fixity and free group actions on products of spheres, Comment. Math. Helv. 79 (2004), no. 4, 758-778. MR 2099121 (2006a:57034)
  • 2. A. Adem, J. Smith, Periodic complexes and group actions, Ann. of Math. (2) 154 (2001), no. 2, 407-435. MR 1865976 (2002i:57031)
  • 3. J.L. Alperin, Weights for finite groups, in The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), 369-379, Proc. Sympos. Pure Math., Part 1, Amer. Math. Soc., Providence, RI, 1987. MR 0933373 (89h:20015)
  • 4. J.L. Alperin, R.B. Bell, Groups and Representations, Graduate Texts in Mathematics, 162. Springer-Verlag, New York, Berlin, 1995. MR 1369573 (96m:20001)
  • 5. J.L. Alperin, P. Fong, Weights for symmetric and general linear groups, J. Algebra 31 (1990), 2-22. MR 1054996 (91h:20014)
  • 6. N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45-92. MR 0102558 (21:1349)
  • 7. N. Blackburn, Generalizations of certain elementary theorems on $ p$-groups, Proc. London Math. Soc. 11 (1961), 1-22. MR 0122876 (23:A208)
  • 8. K.S. Brown, Cohomology of groups, Graduate Texts in Mathematics, 87. Springer-Verlag, New York, Berlin, 1982. MR 0672956 (83k:20002)
  • 9. C. Broto, N. Castellana, J. Grodal, R. Levi, R. Oliver, Extensions of $ p$-local finite groups, to appear Trans. Amer. Math. Soc.
  • 10. C. Broto, R. Levi, R. Oliver, Homotopy equivalences of $ p$-completed classifying spaces of finite groups, Invent. Math. 151 (2003), 611-664. MR 1961340 (2004c:55031)
  • 11. C. Broto, R. Levi, R. Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), no. 4, 779-856. MR 1992826 (2004k:55016)
  • 12. C. Broto, R. Levi, R. Oliver, The theory of $ p$-local groups: a survey, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic $ K$-theory, 51-84, Contemp. Math., 346, Amer. Math. Soc., Providence, RI, 2004. MR 2066496 (2005h:20040)
  • 13. C. Broto, J.M. Møller, Finite Chevalley versions of $ p$-compact groups, preprint.
  • 14. W. Burnside, Theory of groups of finite order, Dover, New York, 1955. MR 0069818 (16:1086c)
  • 15. J. Conway, R. Curtis, S. Norton, R. Parker, R. Wilson, Atlas of finite groups, Oxford Univ. Press, London, 1985. MR 0827219 (88g:20025)
  • 16. B.N. Cooperstein, Maximal groups of $ G_2 (2^n)$, Journal of Algebra 70 (1981), 23-36. MR 0618376 (82h:20055)
  • 17. E.C. Dade, Counting characters in blocks. II.9, in Representation theory of finite groups (Columbus, OH, 1995), 45-59, de Gruyter, Berlin, 1997. MR 1611009 (99b:20016)
  • 18. J. Dietz, Stable splittings of classifying spaces of metacyclic $ p$-groups, $ p$ odd, J. Pure Appl. Algebra 90 (1993), 115-136. MR 1250764 (95f:55014)
  • 19. J. Dietz, S. Priddy, The stable homotopy type of rank two $ p$-groups, Homotopy theory and its applications (Cocoyoc, 1993), 85-95, Contemp. Math., 188, Amer. Math. Soc., Providence, RI, 1995. MR 1349132 (96g:55017)
  • 20. D. Gorenstein, Finite groups. Harper & Row, 1968. MR 0231903 (38:229)
  • 21. D. Gorenstein, Finite simple groups. An introduction to their classification. University Series in Mathematics. Plenum Publishing Corp., New York, 1982. MR 0698782 (84j:20002)
  • 22. D. Gorenstein, The classification of finite simple groups. Vol. 1. Groups of noncharacteristic $ 2$ type. The University Series in Mathematics. Plenum Press, New York, 1983. MR 0746470 (86i:20024)
  • 23. D. Gorenstein, R. Lyons, The local structure of finite groups of characteristic $ 2$ type, Mem. Amer. Math. Soc. 42 (1983), no. 276. MR 0690900 (84g:20025)
  • 24. D. Gorenstein, R. Lyons, R. Solomon, The classification of the Finite Simple Groups, Mathematical Surveys and Monographs, 40.1 AMS (1994). MR 1303592 (95m:20014)
  • 25. D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups. Number 3. Part I. Chapter A. Almost simple $ K$-groups, Mathematical Surveys and Monographs, 40.3 AMS (1998). MR 1490581 (98j:20011)
  • 26. B. Huppert, Endliche Gruppen, Springer, Berlin, Heidelberg, 1967. MR 0224703 (37:302)
  • 27. P.B. Kleidman, The maximal subgroups of the Steinberg triality groups $ {}^3D_4(q)$ and of their automorphism groups, J. Algebra 115 (1988), 182-199. MR 0937609 (89f:20024)
  • 28. P.B. Kleidman, The maximal subgroups of Chevalley groups $ G_2(q)$ with $ q$ odd, the Ree groups $ {}^2G_2(q)$, and their automorphism groups, J. Algebra 117 (1988), 30-71. MR 0955589 (89j:20055)
  • 29. I. J. Leary, The Cohomology of Certain Groups, Ph.D. Thesis, 1992.
  • 30. R. Levi, R. Oliver, Construction of $ 2$-local finite groups of a type studied by Solomon and Benson, Geom. Topol. 6 (2002), 917-990. MR 1943386 (2003k:55016)
  • 31. G. Malle, The maximal subgroups of $ {}^2F_4(q^2)$, J. Algebra 139 (1991), 52-69. MR 1106340 (92d:20068)
  • 32. J. Martino, S. Priddy, On the cohomology and homotopy of Swan groups. Math. Z. 225 (1997), 277-288. MR 1464931 (98i:55018)
  • 33. R. Oliver, Equivalences of classifying spaces completed at odd primes, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 2, 321-347. MR 2092063 (2006g:55010)
  • 34. Ll. Puig, Structure locale dans les groupes finis, Bull. Soc. Math. France Suppl. Múm. No. 47 (1976), 132 pp. MR 0450410 (56:8704)
  • 35. J. S. Rose, A Course on Group Theory, Dover, New York, 1994. MR 1298629
  • 36. A. Ruiz, A. Viruel, The classification of $ p$-local finite groups over the extraspecial group of order $ p^3$ and exponent $ p$, Math. Z. 248 (2004), no. 1, 45-65. MR 2092721 (2005f:20036)
  • 37. R. Stancu, Propriétées locales des groupes finis, Thèse de doctorat présentée à la Faculté des Sciences de l'Université de Lausanne (2002).
  • 38. R. Stancu, Almost all generalized extraspecial $ p$-groups are resistant, J. Algebra 249 (2002), 120-126. MR 1887988 (2003a:20034)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 55R35, 20D20

Retrieve articles in all journals with MSC (2000): 55R35, 20D20


Additional Information

Antonio Díaz
Affiliation: Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, Apdo correos 59, 29080 Málaga, Spain
Address at time of publication: Department of Mathematical Sciences, King’s College, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
Email: adiaz@agt.cie.uma.es, a.diaz@maths.abdn.ac.uk

Albert Ruiz
Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
Email: Albert.Ruiz@uab.es

Antonio Viruel
Affiliation: Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, Apdo correos 59, 29080 Málaga, Spain
Email: viruel@agt.cie.uma.es

DOI: https://doi.org/10.1090/S0002-9947-06-04367-4
Received by editor(s): January 25, 2005
Published electronically: November 22, 2006
Additional Notes: The first author was partially supported by MCED grant AP2001-2484
The second author was partially supported by MEC grant MTM2004-06686
The first and third authors were partially supported by MEC grant MTM2004-06262 and CEC-JA grant FQM213
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society