Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Zuckerman functors between equivariant derived categories

Author: Pavle Pandzic
Journal: Trans. Amer. Math. Soc. 359 (2007), 2191-2220
MSC (2000): Primary 22E46
Published electronically: December 19, 2006
MathSciNet review: 2276617
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We review the Beilinson-Ginzburg construction of equivariant derived categories of Harish-Chandra modules, and introduce analogues of Zuckerman functors in this setting. They are given by an explicit formula, which works equally well in the case of modules with a given infinitesimal character. This is important if one wants to apply Beilinson-Bernstein localization. We also show how to recover the usual Zuckerman functors from the equivariant ones by passing to cohomology.

References [Enhancements On Off] (What's this?)

  • [BB] A. Beilinson, J. Bernstein, A proof of the Jantzen conjecture, (preprint), M.I.T. and Harvard University (1989).
  • [BL1] Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527
  • [BL2] Joseph Bernstein and Valery Lunts, Localization for derived categories of (𝔤,𝔎)-modules, J. Amer. Math. Soc. 8 (1995), no. 4, 819–856. MR 1317229,
  • [BW] A. Borel, N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Math. Studies, vol. 94, Princeton University Press, Princeton, 1980. MR 0554917 (83c:22018)
  • [Bo] N. Bourbaki, Éléments de mathématique. Algèbre. Chapitres 1 à 3, Hermann, Paris, 1970 (French). MR 0274237
  • [De] Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, Vol. 305, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. MR 0354654
  • [DV] M. Duflo, M. Vergne, Sur les functeurs de Zuckerman, C. R. Acad. Sci. Paris 304 (1987), 467-469. MR 0894570 (89h:22025)
  • [EW] T.J. Enright, N.R. Wallach, Notes on homological algebra and representations of Lie algebras, Duke Math. J. 47 (1980), 1-15. MR 0563362 (81c:17013)
  • [GM] Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra, Springer-Verlag, Berlin, 1996. Translated from the 1988 Russian original. MR 1438306
  • [G] V. A. Ginzburg, Equivariant cohomology and Kähler geometry, (Russian), Funktsional. Anal. i Prilozhen. 21 no. 4 (1987), 19-34. MR 0925070 (89b:58013)
  • [HMSW] H. Hecht, D. Milicic, W. Schmid, J.A. Wolf, Localization and standard modules for real semisimple Lie groups I: The duality theorem, Inventiones Math. 90 (1987), 297-332. MR 0910203 (89e:22025)
  • [HS] G. Hochschild and J.-P. Serre, Cohomology of Lie algebras, Ann. of Math. (2) 57 (1953), 591–603. MR 0054581,
  • [Il] Luc Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin-New York, 1971 (French). MR 0491680
    Luc Illusie, Complexe cotangent et déformations. II, Lecture Notes in Mathematics, Vol. 283, Springer-Verlag, Berlin-New York, 1972 (French). MR 0491681
  • [KS] Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006
  • [KV] Anthony W. Knapp and David A. Vogan Jr., Cohomological induction and unitary representations, Princeton Mathematical Series, vol. 45, Princeton University Press, Princeton, NJ, 1995. MR 1330919
  • [M] D. Milicic, Lectures on derived categories,$ ^\sim$milicic/ dercat.pdf.
  • [MP1] Dragan Miličić and Pavle Pandžić, Equivariant derived categories, Zuckerman functors and localization, Geometry and representation theory of real and 𝑝-adic groups (Córdoba, 1995) Progr. Math., vol. 158, Birkhäuser Boston, Boston, MA, 1998, pp. 209–242. MR 1486143
  • [MP2] D. Milicic, P. Pandzic, Cohomology of standard Harish-Chandra sheaves, (in preparation), University of Utah and University of Zagreb.
  • [P1] P. Pandzic, Equivariant analogues of Zuckerman functors, Ph.D. thesis, University of Utah, 1995.
  • [P2] Pavle Pandžić, A simple proof of Bernstein-Lunts equivalence, Manuscripta Math. 118 (2005), no. 1, 71–84. MR 2171292,
  • [Sch] M. Schenuert, The theory of Lie superalgebras, Lecture Notes in Math., vol. 716, Springer-Verlag, Berlin, Heidelberg, 1979. MR 0537441 (80i:17005)
  • [Sp] N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), 121-154.MR 0932640 (89m:18013)
  • [Ve1] J.L. Verdier, Catégories dérivées, état 0, SGA 4 $ {\frac{1}{2}}$, Lecture Notes in Math., vol. 569, Springer-Verlag, 1977.MR 0463174 (57:3132)
  • [Ve2] Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque 239 (1996), xii+253 pp. (1997) (French, with French summary). With a preface by Luc Illusie; Edited and with a note by Georges Maltsiniotis. MR 1453167
  • [Vo] D.A. Vogan, Representations of real reductive Lie groups, Birkhäuser, Boston, 1981.MR 0632407 (83c:22022)
  • [VZ] D.A. Vogan, G.J. Zuckerman, Unitary representations with non-zero cohomology, Compositio Math. 53 (1984), 51-90. MR 0762307 (86k:22040)
  • [W] N.R. Wallach, Real reductive Groups I, Academic Press, Boston, 1988.MR 0929683 (89i:22029)
  • [Z] G. J. Zuckerman, Lecture Series ``Construction of representations via derived functors", Institute for Advanced Study, Princeton, N.J., Jan.-Mar., 1978.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 22E46

Retrieve articles in all journals with MSC (2000): 22E46

Additional Information

Pavle Pandzic
Affiliation: Department of Mathematics, University of Zagreb, PP 335, 10002 Zagreb, Croatia

Received by editor(s): January 15, 2004
Received by editor(s) in revised form: March 9, 2005
Published electronically: December 19, 2006
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society