Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Generating continuous mappings with Lipschitz mappings

Authors: J. Cichon, J. D. Mitchell and M. Morayne
Journal: Trans. Amer. Math. Soc. 359 (2007), 2059-2074
MSC (2000): Primary 54H15, 20M20
Published electronically: December 15, 2006
MathSciNet review: 2276612
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ X$ is a metric space, then $ \mathcal{C}_{X}$ and $ \mathcal{L}_X$ denote the semigroups of continuous and Lipschitz mappings, respectively, from $ X$ to itself. The relative rank of $ \mathcal{C}_{X}$ modulo $ \mathcal{L}_{X}$ is the least cardinality of any set $ U\setminus \mathcal{L}_{X}$ where $ U$ generates $ \mathcal{C}_{X}$. For a large class of separable metric spaces $ X$ we prove that the relative rank of $ \mathcal{C}_{X}$ modulo $ \mathcal{L}_X$ is uncountable. When $ X$ is the Baire space $ \mathbb{N}^{\mathbb{N}}$, this rank is $ \aleph_{1}$. A large part of the paper emerged from discussions about the necessity of the assumptions imposed on the class of spaces from the aforementioned results.

References [Enhancements On Off] (What's this?)

  • 1. S. Banach, Sur un theorème de M. Sierpinski, Fund. Math. 25 (1935) 5-6.
  • 2. H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1967) 241-249. MR 0220249 (36:3315)
  • 3. J. Cichon and M. Morayne, Universal functions and generalized classes of functions, Proc. American Math. Soc. 102 (1988) 83-89. MR 0915721 (89c:26003)
  • 4. R. Engelking, On closed images of the space of irrationals, Proc. Amer. Math. Soc. 21 (1969) 583-586. MR 0239571 (39:928)
  • 5. F. Galvin, Generating countable sets of permutations, J. London Math. Soc. 51 (1995) 230-242. MR 1325568 (96a:20005)
  • 6. P.M. Higgins, J.M. Howie and N. Ruškuc, Generators and factorisations of transformation semigroups, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998) 1355-1369. MR 1663980 (2000a:20139)
  • 7. P.M. Higgins, J.M. Howie, J.D. Mitchell and N. Ruškuc, Countable versus uncountable ranks in infinite semigroups of transformations and relations, Proc. Edinburgh Math. Soc. 46 (2003) 531-544. MR 2013951 (2004h:20093)
  • 8. P. M. Higgins, J. D. Mitchell, M. Morayne and N. Ruškuc, Rank properties of endomorphisms of infinite partially ordered sets, Bull. London Math. Soc. 38 (2006) 177-191. MR 2214470
  • 9. J.M. Howie, N. Ruškuc and P. Higgins, On relative ranks of full transformation semigroups, Comm. Algebra 26 (1998) 733-748. MR 1606221 (99b:20099)
  • 10. K. Kuratowski, Topology, Vol. I, Academic Press, New York, London; Panstwowe Wydawnictwo Naukowe, Warsaw 1966. MR 0217751 (36:840)
  • 11. T. Mackowiak, Singular arc-like continua, Dissertationes Math. (Rozprawy Mat.) 257 (1986). MR 0881290 (88f:54066)
  • 12. W. Sierpinski, Sur les suites infinies de fonctions définies dans les ensembles quelconques, Fund. Math. 24 (1935) 209-212.
  • 13. S. Subbiah, Some finitely generated subsemigroups of $ S(X)$, Fund. Math. 86 (1975) 221-231. MR 0405383 (53:9177)
  • 14. H. Vaughan, On locally compact metrisable spaces, Bull. Amer. Math. Soc, 43 (1937) 532-535.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 54H15, 20M20

Retrieve articles in all journals with MSC (2000): 54H15, 20M20

Additional Information

J. Cichon
Affiliation: Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiań- skiego 27, 50-370 Wrocław, Poland

J. D. Mitchell
Affiliation: Mathematics Institute, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, Scotland

M. Morayne
Affiliation: Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Keywords: Relative ranks, functions spaces, continuous mappings, Lipschitz mappings, Baire space
Received by editor(s): January 28, 2005
Published electronically: December 15, 2006
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society