\(\alpha \)-CONTINUITY PROPERTIES
OF THE SYMMETRIC \(\alpha \)-STABLE PROCESS

R. DANTE DEBLASSIE AND PEDRO J. MÉNDEZ-HERNÁNDEZ

Abstract. Let \(D \) be a domain of finite Lebesgue measure in \(\mathbb{R}^d \) and let \(X_D^\alpha \) be the symmetric \(\alpha \)-stable process killed upon exiting \(D \). Each element of the set \(\{ \lambda_1^\alpha, \lambda_2^\alpha, \ldots \} \) is right continuous. In addition, if \(D \) is Lipschitz and bounded, then each \(\lambda_i^\alpha \) is continuous in \(\alpha \) and the set of associated eigenfunctions is precompact.

1. Introduction

Let \(X_t \) be a \(d \)-dimensional symmetric \(\alpha \)-stable process of order \(\alpha \in (0, 2) \). The process \(X_t \) has stationary independent increments and its transition density

\[p^\alpha(t, z, w) = f^\alpha_t(z - w) \]

is determined by its Fourier transform

\[\exp(-t|z|^\alpha) = \int_{\mathbb{R}^d} e^{iz \cdot w} f^\alpha_t(w) \, dw. \]

These processes have right continuous sample paths and their transition densities satisfy the scaling property

\[p^\alpha(t, x, y) = t^{-d/\alpha} p^\alpha(1, t^{-1/\alpha} x, t^{-1/\alpha} y). \]

When \(\alpha = 2 \) the process \(X_t \) is a \(d \)-dimensional Brownian motion running at twice the usual speed. The nonlocal operator associated to \(X_t \) is \((-\Delta)^{\alpha/2}\) where \(\Delta \) is the Laplace operator in \(\mathbb{R}^d \).

Let \(D \) be an open set in \(\mathbb{R}^d \) and let \(X_D^\alpha \) be the symmetric \(\alpha \)-stable process killed upon leaving \(D \). We write \(p_{D}^\alpha(t, x, y) \) for the transition density of \(X_D^\alpha \) and \(H_\alpha \) for its associated nonlocal self-adjoint positive operator. It is well known that if \(D \) has finite Lebesgue measure, then the spectrum of \(H_\alpha \) is discrete. Let

\[0 < \lambda_1^\alpha(D) \leq \lambda_2^\alpha(D) \leq \lambda_3^\alpha(D) \leq \cdots \]

be the eigenvalues of \(H_\alpha \), and let

\[\varphi_1^\alpha, \varphi_2^\alpha, \varphi_3^\alpha, \ldots \]

be the corresponding sequence of orthonormal \(L^2(D) \) eigenfunctions. Also, \(\varphi_1^\alpha \) is chosen so as to be positive on \(D \). Note that if \(\alpha < 2 \), then \(\lambda_1^\alpha(D) > \lambda_2^\alpha(D) \), but this need not be true if \(\alpha = 2 \) (unless \(D \) is connected).

Several authors have studied properties of the eigenvalues and eigenfunctions of \(H_\alpha \). One common theme has been to extend results on Brownian motion (\(\alpha = 2 \)) to
analogous results for symmetric α-stable processes. For example, R. M. Blumenthal and R. K. Getoor [8] have shown Weyl’s asymptotic law holds: if D is a bounded open set and $N(\lambda)$ is the number of eigenvalues less than or equal to λ, then there exists a constant $C_{d,\alpha}$, depending only on d and α, such that

$$N(\lambda) \approx C_{d,\alpha} \frac{m(D)}{\Gamma(d/\alpha + 1)} \lambda^{d/\alpha}$$

as $\lambda \to \infty$, provided $m(\partial D) = 0$, where m is Lebesgue measure.

If $D \subseteq \mathbb{R}^d$ is a domain, define the inner radius R_D to be the supremum of the radii of all balls contained in D. R. Bañuelos et al. [6] and P. Méndez-Hernández [20] have shown that if D is a convex domain with finite inner radius R_D and I_D is the interval $(-R_D, R_D)$, then

$$\lambda_1^\alpha(I_D) \leq \lambda_1^\alpha(D).$$

Moreover, if $D \subseteq \mathbb{R}^d$ has finite volume and D^* is a ball in \mathbb{R}^d with the same volume as D, then it was proved in [6] that the Faber-Krahn inequality holds:

$$\lambda_1^\alpha(D^*) \leq \lambda_1^\alpha(D).$$

Another line of inquiry taken by those authors was to consider the eigenvalues as a function of the index α. For instance, if D is a convex domain with finite inner radius R_D, then

$$\lambda_1^\alpha(D) \leq \left[\mu_1(D) \right]^{\alpha/2},$$

where $\mu_1(D)$ is the first Dirichlet eigenvalue of $-\Delta$ on D.

For the Cauchy process, i.e. $\alpha = 1$, and bounded Lipschitz domains, R. Bañuelos and T. Kulczycki [5] extended (1.1) to

$$\lambda_1^1(D) \leq \left[\mu_1(D) \right]^{1/2}, \quad i = 1, 2, \ldots,$$

where

$$0 < \mu_1(D) < \mu_2(D) \leq \cdots$$

are all the Dirichlet eigenvalues of $-\Delta$ on D. Their proof of (1.2) is based on a variational formula for $\lambda_1^1(D)$ that they developed from a connection with the Steklov problem for the Laplacian. They also obtained many detailed properties of the eigenfunctions φ_1^i for the Cauchy process.

By finding a connection with the symmetric stable process with rational index α and PDEs of order higher than 2, R. D. DeBlassie [14] derived a variational formula for the eigenvalues which led to the following extension of (1.1) and (1.2):

$$\lambda_1^\alpha(D) \leq \left[\mu_1(D) \right]^{\alpha/2}, \quad i = 1, 2, \ldots,$$

for all rational $\alpha \in (0, 2)$ and certain bounded domains $D \subseteq \mathbb{R}^d$. The class of admissible domains includes convex polyhedra, Lipschitz domains with sufficiently small Lipschitz constant and C^1 domains. Please note there is an error in [14] in the derivation of (1.3) above, as pointed out by the referee of the present article. See [15] for a correction. Also, we have learned of a recent preprint of Z.-Q. Chen
and R. Song [11] which extends (1.3) to all indices $\alpha \in (0, 2)$ and domains D of finite Lebesgue measure.

In this article, we study the eigenvalues and eigenfunctions regarded as functions of the index α. Our first result concerns continuity of the eigenvalues.

Theorem 1.1. Let D be a domain of finite Lebesgue measure. Then, as a function of $\alpha \in (0, 2)$, λ_α^i is right continuous for each positive integer i.

In order to prove Theorem 1.1 we need the following interesting monotonicity property extending (1.3) above. It is due to Z.-Q. Chen and R. Song [11]; see their Example 5.4.

Theorem 1.2. Let D be an open set of finite Lebesgue measure in \mathbb{R}^d. If $0 < \alpha < \beta \leq 2$, then for all positive integers i,

$$\left[\lambda_\alpha^i(D)\right]^{1/\alpha} \leq \left[\lambda_\beta^i(D)\right]^{1/\beta}.$$

Even though those authors consider bounded open sets D, it is clear their argument works for open sets of finite Lebesgue measure.

By requiring more regularity of ∂D, we can prove the following extension of Theorem 1.1.

Theorem 1.3. Let D be a bounded Lipschitz domain. Then, as a function of $\alpha \in (0, 2)$, λ_α^i is continuous for each positive integer i.

We will obtain Theorem 1.3 from the following result that we believe is of independent interest.

Theorem 1.4. Let D be a bounded Lipschitz domain. If α_m converges to $\alpha \in (0, 2)$, then for each positive integer i, $\{\varphi_{\alpha_m}^i : m \geq 1\}$ is precompact in $C(\bar{D})$ equipped with the sup norm. Moreover, if λ_α^i converges to λ, then any limit point of $\{\varphi_{\alpha_m}^i : m \geq 1\}$ is an eigenfunction of H_α and λ is the corresponding eigenvalue.

As a corollary of the proof of the last theorem, we obtain continuity of the first eigenfunction as a function of α.

Theorem 1.5. If D is a bounded Lipschitz domain and α_m converges to $\alpha \in (0, 2)$, then $\varphi_1^{\alpha_m}$ converges uniformly to φ_1^α on D.

The article is organized as follows. In Section 2 we present some results needed in the proof of Theorem 1.1. In Section 3 we establish Theorem 1.1 by proving upper semicontinuity and right lower semicontinuity of the eigenvalues via Dirichlet forms. Lower semicontinuity of the eigenvalues, for Lipschitz domains, is proved in section 4 using Theorem 1.4. This will yield Theorems 1.3 and 1.5. Section 5 deals with certain weak convergence results needed to prove Theorem 1.4. Finally, in Section 6 we prove Theorem 1.4.

2. Preliminary results

Throughout this section we will assume the domain D has finite Lebesgue measure. We denote by $C_c^\infty(D)$ the set of C^∞ functions with compact support in D. The inner product and the norm in $L^2(D)$ will be denoted by $\langle \cdot, \cdot \rangle$ and $\| \cdot \|_2$, respectively.
For any domain $D \subseteq \mathbb{R}^d$, we define τ_D to be the first exit time of X_t from D, i.e.,
$$
\tau_D = \inf\{t > 0 : X_t \notin D\}.
$$

Let
$$
\mathcal{F}_\alpha = \left\{ \varphi \in L^2(\mathbb{R}^d) : \int \int \frac{[\varphi(y) - \varphi(x)]^2}{|y - x|^{d+\alpha}} \, dydx < \infty \right\}.
$$

The Dirichlet form $(\mathcal{E}_\alpha, \mathcal{F}_\alpha)$ associated to X_t is given by
$$
\mathcal{E}_\alpha(\psi, \varphi) = A(d, \alpha) \int \int \frac{[\psi(y) - \psi(x)][\varphi(y) - \varphi(x)]}{|y - x|^{d+\alpha}} \, dydx,
$$
for all $\psi, \varphi \in \mathcal{F}_\alpha$, where
$$
A(d, \alpha) = \frac{\Gamma\left(\frac{d-\alpha}{2}\right)}{2^\alpha \pi^{d/2} \Gamma\left(\frac{\alpha}{2}\right)}.
$$

It is well known that the Dirichlet form corresponding to X^D_t is given by $(\mathcal{E}_\alpha, \mathcal{F}_{\alpha,D})$, where
$$\mathcal{F}_{\alpha,D} = \{u \in \mathcal{F}_\alpha : \text{a quasi continuous version of } u \text{ is 0 quasi everywhere in } D^c \}.$$

Recall that for all ψ, φ in the domain of H_α we have
$$\mathcal{E}_\alpha(\psi, \varphi) = \langle \psi, H_\alpha \varphi \rangle.
$$

As seen in Theorem 4.4.3 of [17], $\mathcal{F}_{\alpha,D}$ is the closure of $C^\infty_c(D)$ in \mathcal{F}_α with respect to the norm
$$
\|\varphi\|_\alpha = \sqrt{\mathcal{E}_\alpha(\varphi, \varphi)} + \|\varphi\|_2.
$$

Lemma 2.1. Let $\varphi, \psi \in C^\infty_c(D)$. Then the function
$$
\mathcal{E}_\alpha(\varphi, \psi) : (0, 2) \to \mathbb{R}
$$
is continuous on $(0, 2)$.

Proof. Let $\varphi, \psi \in C^\infty_c(D)$, and let $\beta \in (\alpha - \delta, \alpha + \delta)$, where $\delta = \frac{1}{4} \min \{2 - \alpha, \alpha\}$. Then there exists a constant $C > 0$, depending only on φ and ψ, such that
$$
\frac{|\psi(y) - \psi(x)|}{|y - x|^{d+\beta}} \leq \frac{C}{|y - x|^{d+\beta - 2}} \leq C \max \left\{ \frac{1}{|y - x|^{d+\alpha+\beta-2}}, \frac{1}{|y - x|^{d+\alpha-\beta-2}} \right\}.
$$

Since D has finite measure, a simple computation using polar coordinates shows that
$$
\max \left\{ \frac{1}{|y - x|^{d+\alpha+\beta-2}}, \frac{1}{|y - x|^{d+\alpha-\beta-2}} \right\}
$$
is integrable in both $(\text{supp}(\varphi) \cup \text{supp}(\psi)) \times D$ and $D \times (\text{supp}(\varphi) \cup \text{supp}(\psi))$. The result immediately follows from the dominated convergence theorem.

We end this section with some basic estimates on L^2 norms to be used in the next section. Suppose k is a positive integer, $0 < \epsilon < 1$, and $\varphi_1, \ldots, \varphi_k \in L^2(D)$ satisfy
$$
|\langle \varphi_i, \varphi_j \rangle| < \frac{\epsilon}{4k^2}, \quad i \neq j,
$$
$$
\left(1 - \frac{\epsilon}{4k^2}\right) < \|\varphi_i\|^2 < \left(1 + \frac{\epsilon}{4k^2}\right),
$$
for all $1 \leq i, j \leq k$. If $\psi = \sum_{i=1}^{k} a_i \varphi_i$ with $\|\psi\|_2 = 1$, then we show that

\begin{equation}
\frac{1}{1 + \epsilon/2} \leq \sum_{i=1}^{k} a_i^2 \leq \frac{1}{1 - \epsilon/2}
\end{equation}

and $\varphi_1, \ldots, \varphi_k$ are linearly independent.

For the proof, note that we have

$$1 = \langle \psi, \psi \rangle = \sum_{i=1}^{k} a_i^2 \|\varphi_i\|_2^2 + 2 \sum_{i=1}^{k} \sum_{j > i} a_i a_j \langle \varphi_i, \varphi_j \rangle$$

$$\geq \sum_{i=1}^{k} a_i^2 \left(1 - \frac{\epsilon}{4k^2}\right) - 2 \sum_{i=1}^{k} \sum_{j > i} |a_i| |a_j| \frac{\epsilon}{4k^2}$$

$$\geq \sum_{i=1}^{k} a_i^2 \left(1 - \frac{\epsilon}{4k^2}\right) - (k^2 - k) \sum_{i=1}^{k} a_i^2 \frac{\epsilon}{4k^2}$$

$$\geq (1 - \epsilon/2) \sum_{i=1}^{k} a_i^2,$$

and we conclude that

\[\sum_{i=1}^{k} a_i^2 \leq \frac{1}{1 - \epsilon/2}. \]

Similar computations give the remaining assertions.

3. Proof of Theorem 1.1

We will use the following well-known result; see [12].

Theorem 3.1. Let H be a nonnegative self-adjoint unbounded operator with discrete spectrum $\{\lambda_i\}_{i=1}^{\infty}$ and domain $\text{Dom}(H)$. Then for $i \geq 1$

\begin{equation}
\lambda_i = \inf \{\lambda(L) : L \subseteq \text{Dom}(H), \dim(L) = i\},
\end{equation}

where

\begin{equation}
\lambda(L) = \sup \{\langle Hf, f \rangle : f \in L, \|f\|_2 = 1\},
\end{equation}

and L is a vector subspace of $\text{Dom}(H)$ of dimension i.

We will prove the right continuity of the kth eigenvalue in two steps.

Proposition 3.2. Let D be a domain of finite Lebesgue measure. Then for all $k \geq 1$

\[\limsup_{\beta \to \alpha} \lambda_k^\beta(D) \leq \lambda_k^\alpha(D). \]

Proof. Let $0 < \epsilon < 1$ and $k \geq 1$. Recall $C_c^\infty(D)$ is dense in $\text{Dom}(H_\alpha)$ under the norm $\| \cdot \|_\alpha$. Then for all $\alpha \in (0, 2)$, there exist $\varphi_1, \ldots, \varphi_k \in C_c^\infty(D)$ such that

\begin{equation}
|\langle \varphi_i^\alpha, \varphi_j^\alpha \rangle - \langle \varphi_i, \varphi_j \rangle| < \frac{\epsilon}{8k^2}
\end{equation}

and

\begin{equation}
|\mathcal{E}_\alpha(\varphi_i^\alpha, \varphi_j^\alpha) - \mathcal{E}_\alpha(\varphi_i, \varphi_j)| < \frac{\epsilon}{8k^2},
\end{equation}

for all $1 \leq i, j \leq k$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Thanks to Lemma 2.1 there exists \(\eta_0 \) such that for all \(\beta \in (\alpha - \eta_0, \alpha + \eta_0) \)

\[
|E_\alpha(\varphi_i, \varphi_j) - E_\beta(\varphi_i, \varphi_j)| < \frac{\epsilon}{8k^2}. \tag{3.5}
\]

Notice that (3.3) implies

\[
|\langle \varphi_i, \varphi_j \rangle| < \frac{\epsilon}{8k^2}, \quad i \neq j,
\]

and

\[
1 - \frac{\epsilon}{8k^2} < \|\varphi_i\|^2 < 1 + \frac{\epsilon}{8k^2},
\]

for all \(1 \leq i, j \leq k \). Then by the comments at the end of Section 2, we know \(\varphi_1, \ldots, \varphi_k \) are linearly independent.

Theorem 3.1 implies

\[
\lambda_\beta^k(D) \leq \lambda_\beta(L_k),
\]

where \(L_k = \text{span}\{\varphi_1, \ldots, \varphi_k\} \) and

\[
\lambda_\beta(L_k) = \sup \{ \langle H_\beta f, f \rangle : f \in L_k, \|f\|_2 = 1 \}.\]

Take \(\psi = \sum_{i=1}^k a_i \varphi_i \in L_k \) such that

\[
\lambda_\beta(L_k) \leq E_\beta(\psi, \psi) + \epsilon/4 \tag{3.6}
\]

and

\[
\|\psi\|_2 = 1.
\]

Thanks to (2.1), with \(\epsilon \) there replaced by \(\epsilon/2 \), we have

\[
\sum_{i=1}^k a_i^2 \leq 2.
\]

Then since

\[
|E_\beta(\psi, \psi) - E_\alpha(\psi, \psi)| \leq \sum_{i=1}^k \sum_{j=1}^k |a_i a_j| \cdot |E_\beta(\varphi_i, \varphi_j) - E_\alpha(\varphi_i, \varphi_j)|,
\]

(3.5) implies

\[
|E_\beta(\psi, \psi) - E_\alpha(\psi, \psi)| < \frac{\epsilon}{4}. \tag{3.7}
\]

Thus

\[
\lambda_\beta^k(D) \leq E_\alpha(\psi, \psi) + \epsilon/2. \tag{3.8}
\]

Consider \(\psi_0 = \sum_{i=1}^k a_i \varphi_i^2 \). By (2.1) we have

\[
\frac{1}{1 + \epsilon/4} \leq \|\psi_0\|^2 = \sum_{i=1}^k a_i^2 \leq \frac{1}{1 - \epsilon/4}.
\]

Following the argument used to obtain (3.7), one easily proves (3.4) implies

\[
|E_\alpha(\psi_0, \psi_0) - E_\alpha(\psi, \psi)| < \frac{\epsilon}{4}.
\]
Hence

\[
\lambda^\beta_k(D) \leq E_\alpha(\psi, \psi) + \epsilon/2 \\
\leq E_\alpha(\psi_0, \psi_0) + 3\epsilon/4 \\
= \sum_{i=1}^k a_i^2 \lambda^\alpha_i(D) + 3\epsilon/4 \\
\leq \lambda^\alpha_k(D) \sum_{i=1}^k a_i^2 + 3\epsilon/4 \\
\leq \frac{1}{1 - \epsilon/4} \lambda^\alpha_k(D) + 3\epsilon/4,
\]

and the result immediately follows. □

Proposition 3.3. Let \(D \) be a domain of finite Lebesgue measure. Then for all \(k \geq 1 \)

\[
\liminf_{\beta \to \alpha^+} \lambda^\beta_k(D) \geq \lambda^\alpha_k(D).
\]

Proof. By Theorem 1.2,

\[
\lambda^\alpha_k(D) \leq \left[\lambda^\alpha_{\beta^\alpha}(D)^{\alpha/(\alpha+\epsilon)} \right].
\]

Now let \(\epsilon \to 0 \) to get the desired \(\liminf \) behavior. □

Combining Propositions 3.2 and 3.3, we get Theorem 1.1.

4. **Proof of Theorems 1.3 and 1.5**

We now show how Theorem 1.4 implies Theorem 1.3. In order to simplify the notation, throughout this section we will write \(\lambda^\alpha_k \) for \(\lambda^\alpha_k(D) \) and \(\mu_k \) for \(\mu_k(D) \).

Proof of Theorem 1.3. We proceed by induction on \(i \). For \(i = 1 \), let \(\{\alpha_m\}_{m=1}^\infty \) be a sequence converging to \(\alpha \) in \((0, 2) \). Consider any subsequence \(\beta_r = \alpha_{m_r} \). Theorem 1.2 implies the sequence \(\{\lambda^\beta_i\}_{m=1}^\infty \) is bounded, and so there is a subsequence \(\gamma_\ell = \beta_\ell \) such that \(\lambda^\gamma_\ell_i \) converges as \(\ell \to \infty \), say, to \(\lambda \). Thanks to Theorem 1.4 we can choose a subsequence \(\eta_p = \gamma_\ell_p \) such that \(\varphi^\eta_p_i \) converges uniformly to \(\varphi \) an eigenfunction of \(H_\alpha \) with eigenvalue \(\lambda \). Since \(\varphi^\eta_p_i \) is nonnegative, so is \(\varphi \). But the only nonnegative eigenfunction of \(H_\alpha \) is \(\varphi^\alpha_1 \). Thus \(\lambda = \lambda^\alpha_1 \) and \(\varphi = \varphi^\alpha_1 \). Hence we have shown any subsequence of \(\lambda^\alpha_m \) contains a further subsequence converging to \(\lambda^\alpha_1 \). We conclude that

\[
\lim_{m \to \infty} \lambda^\alpha_m = \lambda^\alpha_1.
\]

Note this also proves Theorem 1.5.

Next, assume the theorem is true for \(j \leq i \). We verify it is true for \(j = i + 1 \). We will show

\[
\liminf_{\beta \to \alpha} \lambda^\beta_{i+1} \geq \lambda^\alpha_{i+1}.
\]

Combined with the \(\limsup \) behavior from Proposition 3.2, we conclude the desired result

\[
\lim_{\beta \to \alpha} \lambda^\beta_{i+1} = \lambda^\alpha_{i+1}.
\]
To get the lim inf behavior, by way of contradiction, assume \(\lambda = \liminf_{\beta \to \alpha} \lambda_{i+1}^\beta < \lambda_{i+1}^\alpha \). Let \(\{\alpha_m\}_{m=1}^\infty \) be a sequence converging to \(\alpha \) with
\[
\lim_{m \to \infty} \lambda_{i+1}^{\alpha_m} = \lambda.
\]
By the induction hypothesis, \(\lambda_{j^{\alpha}} \) converges to \(\lambda_{j}^\alpha \) for \(j \leq i \). Then Theorem 1.3 implies we can choose a subsequence \(\beta_r = \alpha_m \), such that:
- For each \(j, 1 \leq j \leq i \), \(\lambda_{j}^{\beta_r} \) converges to \(\lambda_{j}^\alpha \), and \(\varphi_{j}^{\beta_r} \) converges uniformly to an eigenfunction \(\varphi_{j} \) of \(H_\alpha \) with corresponding eigenvalue \(\lambda_{j}^\alpha \).
- The limit \(\lambda \) from (4.2) is an eigenvalue of \(H_\alpha \), and \(\varphi_{i+1}^{\beta_r} \) converges uniformly to an eigenfunction \(\varphi_{i+1} \) of \(H_\alpha \) with eigenvalue \(\lambda \).

Since \(\lambda \) is an eigenvalue strictly less than \(\lambda_{i+1}^\alpha \), we can choose positive integers \(\ell \) and \(m \) such that \(\ell \leq m \leq i \), \(\lambda_{m}^\alpha = \lambda \) and
\[
\lambda_{\ell}^\alpha < \lambda_{0}^\alpha = \cdots = \lambda_{m}^\alpha < \lambda_{m+1}^\alpha < \cdots < \lambda_{i+1}^\alpha.
\]
(Here we take \(\lambda_{0}^\alpha := 0 \).) In particular, if \(E \) is the eigenspace corresponding to \(\lambda = \lambda_{m}^\alpha \), then
\[
\dim(E) = m - \ell + 1.
\]
On the other hand, the uniform convergence implies for \(j_1, j_2 \in \{1, \ldots, i+1\} \)
\[
\delta_{j_1j_2} = \int_{D} \varphi_{j_1}^{\beta_r} \varphi_{j_2}^{\beta_r} \, dx \text{ converges to } \int_{D} \varphi_{j_1} \varphi_{j_2} \, dx.
\]
Thus \(\{\varphi_{1}, \ldots, \varphi_{i+1}\} \) is an orthonormal set, and so \(\{\varphi_{i}, \ldots, \varphi_{m}\} \cup \{\varphi_{i+1}\} \) is an orthonormal subset of \(E \). This forces \(\dim(E) \geq m - \ell + 2 \), which contradicts (4.2).

We conclude (4.1) holds.

5. Weak Convergence Results

Let \(D[0, \infty) \) be the space of right continuous functions \(\omega: [0, \infty) \to \mathbb{R}^d \) with left limits. That is, \(\omega(t^+) = \lim_{s \to t^+} \omega(s) = \omega(t) = \lim_{s \to t^-} \omega(s) \) exists. The usual convention is \(\omega(0^-) := \omega(0) \). Let \(X_t(\omega) = \omega(t) \) be the coordinate process and let \(\mathcal{F}_t \) be the \(\sigma \)-algebra generated by the cylindrical sets. We equip \(D[0, \infty) \) with the Skorohod topology. Our main reference is Chapter 3 in Ethier and Kurtz [16]. Let \(P_x^\alpha \) denote the law on \(D[0, \infty) \) of the symmetric \(\alpha \)-stable process started at \(x \); the corresponding expectation will be denoted by \(E_x^\alpha \).

Lemma 5.1. If \((x_n, \alpha_n) \) converges to \((x, \alpha) \) in \(\mathbb{R}^n \times (0, 2) \), then \(P_{x_n}^{\alpha_n} \) converges weakly to \(P_x^\alpha \) in \(D[0, \infty) \).

Proof. Using characteristic functions it is easy to show the corresponding finite dimensional distributions converge. Thus, by Theorem 7.8 on page 131 in [16], it suffices to show \(\{P_{x_n}^\alpha: n \geq 1\} \) is tight on \(D[0, \infty) \).

By Theorem 7.2 and Remark 7.3 of [16] and Theorem 15.2 of [7], it suffices to show that for each \(t_0 \geq 0, \{P_{x_n}^\alpha: n \geq 1\} \) is tight on \(D[0, t_0] \). For this, we proceed as in the proof of Proposition 3.2 in [3], using a theorem of Aldous [2]. For the convenience of the reader, we state the theorem using our notation.

For each \(n \geq 1 \) let \(\tau_n \) be a stopping time with finitely many values, and let \(\delta_n \geq 0 \) converge to 0. Aldous’s Theorem is the following. Suppose for any \(\eta > 0 \),
\[
P_{x_n}^{\alpha_n}(|X(\tau_n + \delta_n) - X(\tau_n)| \geq \eta) \to 0
\]
as \(n \to \infty \). If for each \(t \in [0, t_0] \) the collection
\[
\{ P^\alpha_n \circ X_t : n \geq 1 \}
\]
is tight on \(\mathbb{R}^d \), then \(\{ P^\alpha_n : n \geq 1 \} \) is tight on \(\mathcal{D}[0, t_0] \).

Even though the theorem is stated for dimension one, the argument also works for higher dimensions.

We now verify the conditions of the theorem. First, note that for \(\beta = \alpha \) or \(\alpha_n \) and \(y = x \) or \(x_n \), \(P^\beta_{y} \) solves the martingale problem:

a) \(P^\beta_{y}(X_0 = y) = 1 \),

b) for each \(f \in C^2_b(\mathbb{R}^d) \),
\[
f(X_t) - f(X_0) - \int_0^t \mathcal{L}_\beta f(X_s) ds
\]
is a \(P^\beta_{y} \)-martingale, where \(C^2_b(\mathbb{R}^d) \) is the space of functions with bounded continuous derivatives up to and including order 2 and
\[
\mathcal{L}_\beta f(x) = A(d, \alpha) \int_{\mathbb{R}^d \setminus \{x\}} \frac{f(y) - f(x) - \nabla f(x) \cdot (y - x) I(|y - x| < 1)}{|y - x|^{d+\alpha}} dy;
\]
see Section 2 of [4]. It is easy to show that for any \(f \in C^2_b(\mathbb{R}^d) \) there exists \(C_f > 0 \) independent of \(\alpha_n \) and \(x_n \) such that \(f(X_t) - f(X_0) - C_f t \) is a \(P^\alpha_{x_n} \)-supermartingale.

Then we can argue as in the proof of Proposition 3.2 in [3] to get formula (3.1) from that article: for any bounded stopping time \(\tau_n \),
\[
(5.2) \quad P^\alpha_{x_n} \left(\sup_{\tau_n \leq s \leq \tau_n + \delta} |X_s - X_{\tau_n}| \geq \eta \right) \leq \frac{c \delta}{\eta^2},
\]
where \(c \) is independent of \(n \), \(\delta \) and \(\eta \). Even though the formula from that article is stated for one dimension and \(x_n \equiv x \), the proof works in higher dimensions with \(x_n \) converging to \(x \), since the constant \(C_f \) is independent of \(n \). Note too the requirement there that \(\delta < 1 \) can be dropped.

Replacing \(\delta \) by \(\delta_n \to 0 \) as \(n \to \infty \), upon letting \(n \to \infty \) in (5.2), we obtain condition (5.1). Next we handle tightness of \(\{ P^\alpha_n \circ X_t : n \geq 1 \} \) on \(\mathbb{R}^d \) for \(t \in [0, t_0] \). If \(n \) is large, say \(n \geq N \), then \(|x_n| < |x| + 1 \). Thus, if \(\lambda > |x| + 1 \), then for \(t \in [0, t_0] \), by (5.2) with \(\tau_n \equiv 0 \) and \(\delta = t_0 \)
\[
\sup_{n \geq N} P^\alpha_{x_n} (|X_{t} | \geq \lambda) \leq \sup_{n \geq N} P^\alpha_{x_n} (|X_{t} - x_n| + |x_n| \geq \lambda)
\]

\[
\leq \sup_{n \geq N} P^\alpha_{x_n} (|X_{t} - x_n| \geq \lambda - |x| - 1)
\]

\[
\leq \sup_{n \geq N} P^\alpha_{x_n} (\sup_{s \leq t_0} |X_s - x_n| \geq \lambda - |x| - 1)
\]

\[
\leq \frac{c t_0}{(\lambda - |x| - 1)^2}.
\]

This gives the desired tightness. \(\square \)

The next step is to show for each \(T > 0 \) that the distribution of \(X_{t_0 \wedge \tau_D} \) under \(P^\alpha_{x_n} \) converges to that under \(P^\beta_{x} \) as \((x_n, \alpha_n) \) converges to \((x, \alpha) \). To this end, define
\[
\mathcal{A}_D = \{ \omega \in \mathbb{D}[0, \infty) : d(X[0, \tau_D(\omega) - r], D^r) > 0 \text{ for all rational } 0 < r < \tau_D(\omega) \},
\]
and
\[C_D = \left\{ \omega \in \mathbb{D}(0, \infty) : X(\tau_D(\omega)) \in \mathcal{D} \right\} \cap A_D. \]
Here \(X[0, t] = \{ X_s : 0 \leq s \leq t \} \) and \(d(A, B) \) is the distance between \(A \) and \(B \).

Lemma 5.2. For open \(D \subseteq \mathbb{R}^d \), \(\tau_D \) is continuous on \(C_D \).

Proof. Let \(\omega \in C_D \) and suppose \(\omega_n \) converges to \(\omega \) in \(\mathbb{D}(0, \infty) \). We will show that \(\tau_D(\omega_n) \) converges to \(\tau_D(\omega) \). Let
\[\Lambda' = \{ \lambda : [0, \infty) \to [0, \infty) | \lambda \text{ is strictly increasing and surjective} \}. \]
Proposition 5.3 (a) and (c), on page 119 in [16], implies that for each \(T > 0 \) there exist \(\{ \lambda_n \} \subseteq \Lambda' \) such that
\[\begin{align*}
&\lim_{n \to \infty} \sup_{0 \leq t \leq T} |\lambda_n(t) - t| = 0, \\
&\lim_{n \to \infty} \sup_{0 \leq t \leq T} |\omega_n(t) - \omega(\lambda_n(t))| = 0.
\end{align*} \]
First we show that
\[\liminf_{n \to \infty} \tau_D(\omega_n) \geq \tau_D(\omega). \]
Let \(\delta \in (0, \tau_D(\omega)/2) \) be rational and set
\[\varepsilon = d(\omega[0, \tau_D(\omega) - \delta], D^c). \]
Since \(\omega \in C_D \), we have \(\varepsilon > 0 \). Using \(T = \tau_D(\omega) \) in (5.3)–(5.4), there exists \(N \) such that for \(n \geq N \),
\[\begin{align*}
&\left\{ t - \delta < \lambda_n(t) < t + \delta \text{ for all } t \leq T, \\
&\sup_{0 \leq t \leq T} |\omega_n(t) - \omega(\lambda_n(t))| < \frac{\varepsilon}{2}.
\end{align*} \]
In particular, for all \(t \leq \tau_D(\omega) - 2\delta \) and \(n \geq N \)
\[\lambda_n(t) < t + \delta \leq \tau_D(\omega) - \delta < T. \]
Thus \(\omega(\lambda_n(t)) \in D \) and \(d(\omega(\lambda_n(t)), D^c) \geq \varepsilon \). Therefore,
\[\omega_n(t) \in B(\omega(\lambda_n(t)), \epsilon/2) \subseteq D, \]
for all \(t \leq \tau_D(\omega) - 2\delta \) and \(n \geq N \). This implies \(\tau_D(\omega_n) > \tau_D(\omega) - 2\delta \) for \(n \geq N \). Take the \(\lim inf \) as \(n \to \infty \) and then let \(\delta \to 0 \) to get (5.5).

To finish, we show that
\[\limsup_{n \to \infty} \tau_D(\omega_n) \leq \tau_D(\omega). \]
Given that \(\omega \in C_D \) and \(\omega \) is right continuous, we can choose \(\delta > 0 \) such that
\[\varepsilon := d(\omega[\tau_D(\omega), \tau_D(\omega) + 2\delta], D) > 0. \]
Using \(T = \tau_D(\omega) + 2\delta \) in (5.3)–(5.4) we can choose \(N \) such that for \(n \geq N \), (5.6) holds for this choice of \(\delta, \varepsilon \) and \(T \). In particular, for \(n \geq N \),
\[\tau_D(\omega) < \lambda_n(\tau_D(\omega) + \delta) < \tau_D(\omega) + 2\delta \]
and
\[|\omega_n(\tau_D(\omega) + \delta) - \omega(\lambda_n(\tau_D(\omega) + \delta))| < \frac{\varepsilon}{2}. \]
Together these imply
\[d(\omega_n(\tau_D(\omega) + \delta), D) > 0, \quad n \geq N, \]
which in turn yields
\[\tau_D(\omega_n) \leq \tau_D(\omega) + \delta, \quad n \geq N. \]
Taking the lim sup as \(n \to \infty \) and then letting \(\delta \to 0 \) yields (5.7). \(\square \)

Lemma 5.3. If \(D \) is a bounded domain that satisfies an exterior cone condition or if \(D \) is a cone, then for all \(x \in D \) and \(0 < \alpha < 2 \),
\[P^\alpha_x(C_D \cap \{ X(\tau_D) \in D \}) = 1. \]

Proof. If \(D \) is bounded and satisfies a uniform exterior cone condition, it is known
\[
(5.8) \quad P^\alpha_x(X(\tau_D) \in \partial D) = 0;
\]
see Lemma 6 in [10]. If \(D \) is a cone, we can apply Lemma 6 in [10] to \(D \cap B_M(0) \)
and letting \(M \to \infty \), we get (5.8).

The proof of Theorem 2 in [18] implies
\[P^\alpha_x(X(\tau_D) \in \partial D, X(\tau_D) \in E) = 0, \quad E \subseteq \overline{E} \subseteq \overline{D}^c \]
(see the lines before the footnote on page 89). Combined with (5.8),
\[P^\alpha_x(X(\tau_D) \in \overline{D}^c, X(\tau_D) \in D) = 1. \]
Thus to prove the lemma we need to show that
\[P^\alpha_x(d(X[0, \tau_D - r], D^c) > 0 \text{ for all rational } r < \tau_D) = 1. \]
Let
\[D_n = \{ x \in D : d(x, D^c) > \frac{1}{n} \} \]
and observe \(\tau_{D_n} \leq \tau_D \) increases to some limit \(L \leq \tau_D \). By quasi-left continuity,
\(X(\tau_{D_n}) \to X(L) \) almost surely. One easily sees \(X(L) \notin D \), i.e., \(\tau_D \leq L \). Hence
\(\tau_D = L \), and the increasing limit of \(\tau_{D_n} \) is \(\tau_D \).

If for some rational \(r < \tau_D \) we have
\[d(X[0, \tau_D - r], D^c) = 0, \]
then for some sequence \(s_n \leq \tau_D - r \),
\[d(X_{s_n}, D^c) \to 0. \]
It is no loss to assume \(s_n \) converges, say to \(s \). Choose \(N \) such that for all \(n \geq N \)
\[\tau_D - r < \tau_{D_n} \leq \tau_D \]
Given \(n \geq N \), choose \(M_n \) such that for all \(m \geq M_n \),
\[d(X_{s_m}, D^c) < \frac{1}{2n} \]
Then for such \(m \), \(X_{s_m} \in D_n^c \), which forces
\[\tau_{D_n} \leq s_m \leq \tau_D - r. \]
Let \(m \to \infty \) to get \(\tau_{D_n} \leq s \leq \tau_D - r \), then let \(n \to \infty \) to get \(\tau_D = \lim_{n \to \infty} \tau_{D_n} \leq \tau_D - r \);
a contradiction. Thus (5.10) holds. \(\square \)

We will need the following elementary result shortly.

Lemma 5.4. Let \(a_n \) and \(b_n \) be nonnegative sequences such that \(a_n \wedge b_n \to 0 \) as \(n \to \infty \). Then for some \(n_k \), either \(a_{n_k} \to 0 \) or \(b_{n_k} \to 0 \) as \(k \to \infty \).
Proof. Suppose \(\lim \inf_{n \to \infty} a_n = a > 0 \). Choose a subsequence \(a_{n_k} \) such that \(a_{n_k} \geq \frac{a}{2} \) for all \(k \). Then

\[
a_{n_k} \wedge b_{n_k} \geq \frac{a}{2} \wedge b_{n_k} \geq 0.
\]

Since \(a_{n_k} \wedge b_{n_k} \to 0 \) as \(k \to \infty \), we must have \(\frac{a}{2} \wedge b_{n_k} \to 0 \), which in turn forces \(b_{n_k} \to 0 \).

Lemma 5.5. Let \(D \) be a bounded domain that satisfies an uniform exterior cone condition, and let \(f \) be a bounded continuous function on \(\mathbb{R}^d \). If \((x_n, \alpha_n) \) converges to \((x, \alpha)\) in \(D \times (0, 2) \), then for each \(T > 0 \),

\[
E_{x_n}^\alpha[f(X_{T \wedge \tau_D})] \to E_x^\alpha[f(X_{T \wedge \tau_D})].
\]

Proof. Let \(C_D(T) = C_D \cap \{ X(\tau_D) \in D \} \cap \{ \tau_D \neq T \} \cap \{ \lim_{s \to T} X_s = X_T \} \).

Recall that the symmetric \(\alpha \)-stable process has no fixed discontinuities. Then by the eigenfunction expansion of \(P_x^\alpha(\tau_D > t) \),

\[
P_x^\alpha(\tau_D \neq T, \lim_{s \to T} X_s = X_T) = 1.
\]

Thanks to Lemma 5.3

\[
P_x^\alpha(C_D(T)) = 1.
\]

If we can show that

\[
\omega \in C_D(T) \to \omega(T \wedge \tau_D(\omega))
\]

is continuous, then by an extension of the continuous mapping theorem (Theorem 5.1 in [7]), the desired conclusion will follow.

Let \(\omega \in C_D(T) \) and suppose \(\omega_n \in C_D(T) \) converges to \(\omega \) in \(D[0, \infty) \). Define

\[
t_n = T \wedge \tau_D(\omega_n),
\]

\[
t = T \wedge \tau_D(\omega).
\]

To show that

\[
\lim_{n \to \infty} \omega_n(T \wedge \tau_D(\omega_n)) = \omega(T \wedge \tau_D(\omega)),
\]

we show for every subsequence \(\omega_{n_k} \) there is a further subsequence \(\omega_{n_{k_l}} \) such that

\[
\lim_{l \to \infty} \omega_{n_{k_l}}(T \wedge \tau_D(\omega_{n_{k_l}})) = \omega(T \wedge \tau_D(\omega)).
\]

By Lemma 5.2 \(\lim_{n \to \infty} t_n = t \). Applying Proposition 6.5(a) on page 125 in [10],

\[
\lim_{n \to \infty} |\omega(t_n) - \omega(t)| \wedge |\omega(t_n - \omega(t)| = 0.
\]

Hence by Lemma 5.3 for any subsequence \(\omega_{n_k} \) there is a further subsequence \(\omega_{n_{k_l}} \) such that either

\[
\lim_{l \to \infty} |\omega_{n_{k_l}}(t_{n_{k_l}}) - \omega(t)| = 0
\]

or

\[
(5.11) \quad \lim_{l \to \infty} |\omega_{n_{k_l}}(t_{n_{k_l}}) - \omega(t^-)| = 0.
\]

In the first case, clearly

\[
\lim_{l \to \infty} \omega_{n_{k_l}}(T \wedge \tau_D(\omega_{n_{k_l}})) = \omega(T \wedge \tau_D(\omega)),
\]

as desired.
In the second case (5.11), we distinguish two cases: $T > \tau_D(\omega)$ and $T < \tau_D(\omega)$ (recall $\omega \in C_D(T)$ implies $\tau_D(\omega) \neq T$).

Let us first assume $T > \tau_D(\omega)$. Since $\tau_D(\omega_{n_k})$ converges to $\tau_D(\omega)$ by Lemma 5.2, $t_{n_k} = \tau_D(\omega_{n_k})$ for large l. Hence by (5.11)

$$\lim_{l \to \infty} \omega_{n_k}(\tau_D(\omega_{n_k})) = \lim_{l \to \infty} \omega_{n_k}(t_{n_k}) = \omega(t^-) = \omega(\tau_D(\omega^-)).$$

Notice that if $\lim_{l \to \infty} \omega_{n_k}(\tau_D(\omega_{n_k})) = y$ exists, then $y \in D^c$. But then $\omega \in C_D(T)$ implies $y = \omega(\tau_D(\omega^-)) \notin D$; a contradiction. Thus $T > \tau_D(\omega)$ is not possible.

Finally, if $T < \tau_D(\omega)$, then by Lemma 5.2

$$T < \tau_D(\omega_{n_k}),$$

for l large. Since $\omega \in C_D(T)$, (5.11) becomes

$$\omega_{n_k}(T) \to \omega(T^-) = \omega(T).$$

We conclude that

$$\lim_{l \to \infty} \omega_{n_k}(T \land \tau_D(\omega_{n_k})) = \lim_{l \to \infty} \omega_{n_k}(T)$$

$$= \omega(T^-)$$

$$= \omega(T)$$

$$= \omega(T \land \tau_D(\omega)).$$

In any event, we get the desired continuity. \Box

6. Proof of Theorem 1.4

We will need the following lemma; it is formula (2.7) in [5]. Although the authors do not mention the statement concerning continuity in α, it is possible to trace back through the literature they cite to see the statement holds.

Lemma 6.1. If $D \subseteq \mathbb{R}^d$ is a bounded Lipschitz domain, then for some positive continuous functions $C(\alpha)$ and $\beta(\alpha)$,

$$E^\alpha_x(\tau_D) \leq C(\alpha) \delta_D^\beta(x), \quad \text{for all } x \in D.$$

The next result immediately follows.

Corollary 6.2. Given a bounded Lipschitz domain D and compact $K \times [a, b] \subseteq \overline{D} \times (0, 2)$,

$$\sup \{ E^\alpha_x(\tau_D) : (x, \alpha) \in K \times [a, b] \} < \infty.$$

Corollary 6.2 will allow us to get equicontinuity of the eigenfunctions near ∂D. For the interior of D we need the following Krylov–Safanov type of theorem. Let

$$G_0^\alpha g(x) = E^\alpha_x \left[\int_0^{\tau_D} g(X_t) \, dt \right]$$

be the 0-resolvent of the killed symmetric α-stable process in D.

Lemma 6.3. Suppose g is bounded with support in \overline{D}. Then for each $x \in D$ there exist positive continuous functions $C(\alpha)$ and $\beta(\alpha)$, independent of g, such that for all $y \in D$

$$| G_0^\alpha g(x) - G_0^\alpha g(y) | \leq C(\alpha) [\sup |G_0^\alpha g| + \sup |g|] |x - y|^\beta(\alpha).$$
Proof. This theorem is essentially due to Bass and Levin [4] (see their Proposition 4.2 on page 387). While they consider the 0-resolvent

\[S_0 g(x) = E_x \left[\int_0^\infty g(X_t) \, dt \right], \]

their proof also works for the killed resolvent because their crucial formula

\[S_0 g(y) = E_y \left[\int_{\tau_{B(x,r)}}^\infty g(X_t) \, dt \right] + E_y \left[S_0 g(X_{\tau_{B(x,r)}}) \right] \]

holds when \(S_0 \) is replaced by \(G_0^\alpha \) and \(E_y \) is replaced by \(E^\alpha_y \), where \(r > 0 \) is such that \(B(x,r) \subset D \). Since we are restricted to \(D \) instead of \(\mathbb{R}^d \), the numbers \(C(\alpha) \) and \(\beta(\alpha) \) depend on \(x \), in contrast to the case treated by Bass and Levin. Moreover, it is a simple matter to go through their proof and see that the numbers \(C(\alpha) \) and \(\beta(\alpha) \) can be chosen to depend continuously on \(\alpha \). □

Corollary 6.4. Assume \(D \) is bounded and Lipschitz. Then for each \(x \in D \) and \([a,b] \subseteq (0,2) \), there exist positive \(C \) and \(r \) such that

\[|G_0^\alpha g(x) - G_0^\alpha g(y)| \leq C |x - y|^r \sup |g| \]

for all \(y \in D \), \(\alpha \in [a,b] \) and bounded \(g \) with support in \(D \).

Proof. By Corollary 6.2

\[\sup |G^\alpha g| \leq \sup |g| \cdot \sup_x E^\alpha_x (\tau_D) \leq \sup |g| \cdot C \]

where \(C \) is independent of \(\alpha \in [a,b] \) and \(g \). The result follows from this and the continuity of \(C(\alpha) \) and \(\beta(\alpha) \) from Lemma 6.3. □

At last we can prove Theorem 1.4. It is well known that

\[0 \leq p^\alpha_D(t,x,y) \leq p^\beta(t,x,y). \]

Moreover,

\[p^\alpha(t,x,y) \leq C(\alpha)t^{-d/\alpha} \]

where \(C(\alpha) \) is continuous in \(\alpha \) (see (2.1) in [9]).

Let \(\{\alpha_m\}_{m=1}^\infty \subseteq (0,2) \) be a sequence converging to \(\alpha \in (0,2) \). Recall that for all \(\beta \in (0,2) \), \(\{\varphi_\beta^\alpha\}_m \) is an orthonormal set. Then thanks to the symmetry of the heat kernel and 6.2

\[\varphi_\beta^\alpha(x) = e^{\lambda_\beta^D t} \int_D p^\beta_D(t,x,y) \varphi_\beta^\alpha(y) \, dy \]

\[\leq e^{\lambda_\beta^D t} \sqrt{\int_D \left[p^\beta_D(t,x,y) \right]^2 \, dy} \]

\[= e^{\lambda_\beta^D t} \sqrt{p^\beta_D(2t,x,x)} \]

\[\leq e^{\lambda_\beta^D t} \sqrt{\frac{C(\beta)}{(2t)^d/\beta}}. \]
In particular, taking \(t = 1 \) and using Theorem 1.2,

\[
(6.3) \quad \sup_{x \in D, m \geq 1} \varphi_i^{\alpha m}(x) \leq \sup_{m \geq 1} e^{\alpha m} \sqrt{\frac{C(\alpha_m)}{2^{d/\alpha_m}}} < \infty.
\]

Thus for each \(i \geq 1 \), the sequence \(\{\varphi_i^{\alpha m}\}_{m=1}^{\infty} \) is uniformly bounded. Next we show the sequence \(\{\varphi_i^{\alpha m}\}_{m=1}^{\infty} \) is pointwise equicontinuous on \(\overline{D} \). Indeed, since

\[
(6.4) \quad \varphi_i^\beta = \lambda_i^\beta G_0^\beta \varphi_i^1.
\]

Corollary [6.4] implies that for each \(x \in D \) there exist \(C \) and \(r \) such that

\[
|\varphi_i^{\alpha m}(x) - \varphi_i^{\alpha m}(y)| = \lambda_i^{\alpha m} |G_0^{\alpha m} \varphi_i^{\alpha m}(x) - G_0^{\alpha m} \varphi_i^{\alpha m}(y)|
\leq C \left[\sup_{m \geq 1} \mu_i^{\alpha m/2} \left[\sup_{u \in D, m \geq 1} |\varphi_i^{\alpha m}(u)| \right] \right] |x - y|^r
\]

for all \(m \geq 1 \) and \(y \in D \). Thanks to (6.3) we get the desired equicontinuity for \(x \in D \).

As for \(x \in \partial D \), first notice (6.4) and Lemma 6.1 imply there are \(r \) and \(C \) independent of \(m \) such that for each \(z \in D \)

\[
|\varphi_i^{\alpha m}(z)| \leq \left[\sup_{m \geq 1} \mu_i^{\alpha m/2} \left[\sup_{y \in D, m \geq 1} |\varphi_i^{\alpha m}(y)| \right] \right] E_z^{\alpha m}(\partial D)
\leq C \left[\delta_D(z) \right]^r.
\]

Thus \(\varphi_i^{\alpha m} \) is continuous on \(\overline{D} \) with boundary value 0. Hence if \(x \in \partial D \), then

\[
|\varphi_i^{\alpha m}(x) - \varphi_i^{\alpha m}(y)| = |\varphi_i^{\alpha m}(y)|
\leq C \left[\delta_D(y) \right]^r
\leq C|x - y|^r.
\]

By Ascoli’s Theorem, the sequence \(\{\varphi_i^{\alpha m}\}_{m=1}^{\infty} \) is precompact in \(C(\overline{D}) \).

Next assume \(\{\lambda_i^{\alpha m}\}_{m=1}^{\infty} \) converges to \(\lambda \). We show any limit point \(\varphi \) of the sequence \(\{\varphi_i^{\alpha m}\}_{m=1}^{\infty} \) is an eigenfunction of \(H_\alpha \) and the corresponding eigenvalue is \(\lambda \). Choose a subsequence \(\beta_i = \alpha_m \) such that, as \(r \to \infty \), \(\varphi_i^{\beta_i} \) converges uniformly to \(\varphi \) on \(\overline{D} \). Since \(\varphi_i^{\beta_i} \) and \(\varphi \) are 0 on \(\partial D \), we can extend them to all of \(\mathbb{R}^d \) by taking them to be 0 outside \(D \). Then

\[
E_x^{\beta_i} \left[\varphi_i^{\beta_i}(X_{t \wedge \tau_D}) \right] = E_x^{\beta_i} \left[\varphi_i^{\beta_i}(X_t) \mathbb{I}_{\tau_D > t} \right],
\]

and \(\varphi_i^{\beta_i} \) converges to \(\varphi \) uniformly on \(\mathbb{R}^d \). Thus we have

\[
e^{-\lambda_i^{\alpha m} t} \varphi_i^{\alpha m}(x) = \int_D \varphi_D(t, x, y) \varphi_i^{\beta_i}(y) dy
\]

\[
(6.5) \quad = E_x^{\beta_i} \left[\varphi_i^{\beta_i}(X_t) \mathbb{I}_{\tau_D > t} \right]
\]

\[
= E_x^{\beta_i} \left[\varphi_i^{\beta_i}(X_{t \wedge \tau_D}) \right]
\]

\[
= E_x^{\beta_i} \left[\varphi_i^{\beta_i}(X_{t \wedge \tau_D}) - \varphi(X_{t \wedge \tau_D}) \right] + E_x^{\beta_i} \left[\varphi(X_{t \wedge \tau_D}) \right].
\]
Lemma 6.5 and the uniform convergence of ϕ_α^m to ϕ imply
\[
\lim_{r \to \infty} E_x^\beta \left[\phi_\alpha^m (X_t \wedge \tau_D) - \phi (X_t \wedge \tau_D) \right] + E_x^\beta \left[\phi(X_t \wedge \tau_D) \right] = E_x^\alpha [\phi(X_t \wedge \tau_D)].
\]
Since the left-hand side of (6.5) converges to $e^{-\lambda t} \phi(x)$, we conclude that
\[
e^{-\lambda t} \phi(x) = E_x^\alpha \left[\phi(X_t \wedge \tau_D) \right] = E_x^\alpha \left[\phi(X_t) I_{\tau_D > \tau} \right] = \int_D p_\alpha^D (t, x, y) \phi(y) dy.
\]
Hence ϕ is an eigenfunction of H_α, and the corresponding eigenvalue is λ. \qed

ACKNOWLEDGEMENT

We are grateful to Professor Z.-Q. Chen for sending us his preprint [11]. Also, we thank the referee for a thorough review of this article and the discovery that the proof of Theorem 1.5 in [14] had a gap. This rendered our original proof of Theorem 1.2 invalid.

REFERENCES

REFERENCES

Department of Mathematics, Texas A & M University, College Station, Texas 77843
E-mail address: deblass@math.tamu.edu

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
Current address: Escuela de Matemática, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
E-mail address: mendez@math.utah.edu