Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Inhomogeneous Strichartz estimates for the Schrödinger equation


Author: M. C. Vilela
Journal: Trans. Amer. Math. Soc. 359 (2007), 2123-2136
MSC (2000): Primary 35J10, 46B70
DOI: https://doi.org/10.1090/S0002-9947-06-04099-2
Published electronically: December 15, 2006
MathSciNet review: 2276614
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study Strichartz estimates for the solution of the Cauchy problem associated with the inhomogeneous free Schrödinger equation in the case when the inital data is equal to zero, proving some new estimates for certain exponents and giving counterexamples for some others.


References [Enhancements On Off] (What's this?)

  • [1] J. Bergh and J.Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, Heidelberg, New York, 1976. MR 0482275 (58:2349)
  • [2] T. Cazenave and F.B. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $ H^1$, Manuscripta Math. 61 (1988), 477-494. MR 0952091 (89j:35114)
  • [3] T. Cazenave and F.B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Commun. Math. Phys. 147 (1992), 75-100. MR 1171761 (93d:35150)
  • [4] M. Christ and A. Kiselev, Maximal functions associated to filtrations, Journ. Func. Anal. 179 (2001), 409-425. MR 1809116 (2001i:47054)
  • [5] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéare 2 (1985), 309-327. MR 0801582 (87b:35150)
  • [6] T. Kato, An $ L^{q,r}-$theory for nonlinear Schrödinger equations, Spectral and scattering theory and applications, Adv. Stud. Pure Math., vol. 23, Math. Soc. Japan, Tokyo, 1994, pp. 223-238. MR 1275405 (95i:35276)
  • [7] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980. MR 1646048 (2000d:35018)
  • [8] S.J. Montgomery-Smith, Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equation, Duke Math. J. 91 (1998), 393-408. MR 1600602 (99e:35006)
  • [9] I.E. Segal, Space-time decay for solutions of wave equations, Adv. Math. 22 (1976), 304-311. MR 0492892 (58:11945)
  • [10] E.M. Stein, Harmonic Analysis. Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 1993. MR 1232192 (95c:42002)
  • [11] R.S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-714. MR 0512086 (58:23577)
  • [12] T. Tao, Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrödinger equation, Comm. Partial Differential Equations 25 (2000), 1471-1485. MR 1765155 (2001h:35038)
  • [13] P.A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477-478. MR 0358216 (50:10681)
  • [14] P.A. Tomas, Restriction theorems for the Fourier transform, Harmonic Analysis in Euclidean Spaces (2 volumes), G. Weiss and W. Wainger (eds.), Proc. Sympos. Pure Math. # 35, Amer. Math. Society (1979), part 1, 111-114. MR 0545245 (81d:42029)
  • [15] K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 (1987), 415-426. MR 0891945 (88e:35048)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35J10, 46B70

Retrieve articles in all journals with MSC (2000): 35J10, 46B70


Additional Information

M. C. Vilela
Affiliation: Departamento de Matemática Aplicada, Escuela Universitaria de Informática, Campus de Segovia - Universidad de Valladolid, Plaza de Santa Eulalia 9 y 11, 40005 Segovia, Spain
Email: maricruz@eis.uva.es

DOI: https://doi.org/10.1090/S0002-9947-06-04099-2
Received by editor(s): December 12, 2003
Received by editor(s) in revised form: March 1, 2005
Published electronically: December 15, 2006
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society