Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The combinatorics of twisted involutions in Coxeter groups


Author: Axel Hultman
Journal: Trans. Amer. Math. Soc. 359 (2007), 2787-2798
MSC (2000): Primary 20F55; Secondary 06A07
DOI: https://doi.org/10.1090/S0002-9947-07-04070-6
Published electronically: January 26, 2007
MathSciNet review: 2286056
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The open intervals in the Bruhat order on twisted involutions in a Coxeter group are shown to be PL spheres. This implies results conjectured by F. Incitti and sharpens the known fact that these posets are Gorenstein$ ^*$ over $ \mathbb{Z}_2$.

We also introduce a Boolean cell complex which is an analogue for twisted involutions of the Coxeter complex. Several classical Coxeter complex properties are shared by our complex. When the group is finite, it is a shellable sphere, shelling orders being given by the linear extensions of the weak order on twisted involutions. Furthermore, the $ h$-polynomial of the complex coincides with the polynomial counting twisted involutions by descents. In particular, this gives a type-independent proof that the latter is symmetric.


References [Enhancements On Off] (What's this?)

  • 1. A. Björner, Posets, regular CW complexes and Bruhat order, European J. Combin. 5 (1984), 7-16. MR 0746039 (86e:06002)
  • 2. A. Björner, Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. Math. 52 (1984), 173-212. MR 0744856 (85m:52003)
  • 3. A. Björner, The Möbius function of factor order, Theoretical Computer Sci. 117 (1993), 91-98. MR 1235170 (94j:68241)
  • 4. A. Björner and F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266 (2006d:05001)
  • 5. A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler, Oriented matroids (Second edition), Encyclopedia of mathematics and its applications 46, Cambridge Univ. Press, 1999. MR 1744046 (2000j:52016)
  • 6. A. Björner and M. Wachs, Bruhat order of Coxeter groups and shellability, Adv. Math. 43 (1982), 87-100. MR 0644668 (83i:20043)
  • 7. F. Brenti, $ q$-Eulerian polynomials arising from Coxeter groups, European J. Combin. 15 (1994), 417-441. MR 1292954 (95i:05013)
  • 8. F. Brenti, Kazhdan-Lusztig polynomials: History, problems, and combinatorial invariance, Sémin. Lothar. Combin. 49 (2002), B49b, 30pp. MR 2006565 (2004g:05152)
  • 9. K. S. Brown, Buildings, Springer Monographs in Mathematics, New York, NY, 1989. MR 0969123 (90e:20001)
  • 10. R. W. Carter, Conjugacy classes in the Weyl group, Comp. Math. 25 (1972), 1-59. MR 0318337 (47:6884)
  • 11. V. V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), 187-198. MR 0435249 (55:8209)
  • 12. F. du Cloux, An abstract model for Bruhat intervals, European J. Combin. 21 (2000), 197-222. MR 1742435 (2000m:06003)
  • 13. W. M. B. Dukes, Permutation statistics for involutions, European J. Combin. 28 (2006), 186-198. MR 2261870
  • 14. M. J. Dyer, Hecke algebras and reflections in Coxeter groups, Ph.D. thesis, University of Sydney, 1987.
  • 15. A. Garsia and D. Stanton, Group actions on Stanley-Reisner rings and invariants of permutations groups, Adv. Math. 51 (1984), 107-201. MR 0736732 (86f:20003)
  • 16. A. Hultman, Fixed points of involutive automorphisms of the Bruhat order, Adv. Math. 195 (2005), 283-296. MR 2145798 (2006a:06001)
  • 17. J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29, Cambridge Univ. Press, 1990. MR 1066460 (92h:20002)
  • 18. F. Incitti, The Bruhat order on the involutions of the symmetric group, J. Algebraic Combin. 20 (2004), 243-261. MR 2106960 (2005h:06003)
  • 19. F. Incitti, The Bruhat order on the involutions of the hyperoctahedral group, European J. Combin. 24 (2003), 825-848. MR 2009396 (2004h:05128)
  • 20. F. Incitti, Bruhat order on the involutions of classical Weyl groups, Ph.D. thesis, Università di Roma ``La Sapienza'', 2003.
  • 21. M. Marietti, Combinatorial properties of zircons, Institut Mittag-Leffler, http://www.mittag-leffler.se /preprints/0405s/info.php?id=34.
  • 22. N. Reading, The cd-index of Bruhat intervals, Electron. J. Combin. 11(1) (2004), R74, 25pp. MR 2097340 (2005j:06004)
  • 23. R. W. Richardson and T. A. Springer, The Bruhat order on symmetric varieties, Geom. Dedicata 35 (1990), 389-436. MR 1066573 (92e:20032)
  • 24. R. W. Richardson and T. A. Springer, Complements to: The Bruhat order on symmetric varieties, Geom. Dedicata 49 (1994), 231-238. MR 1266276 (95f:20074)
  • 25. T. A. Springer, Some results on algebraic groups with involutions, Advanced Studies in Pure Math. 6, 525-543, Kinokuniya/North-Holland, 1985. MR 0803346 (86m:20050)
  • 26. R. P. Stanley, $ f$-vectors and $ h$-vectors of simplicial posets, J. Pure Appl. Algebra 71 (1991), 319-331. MR 1117642 (93b:06009)
  • 27. V. Strehl, Symmetric Eulerian distributions for involutions, Sémin. Lothar. Combin. 1, Strasbourg 1980. Publications de l'I.R.M.A. 140/S-02 , Strasbourg, 1981.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20F55, 06A07

Retrieve articles in all journals with MSC (2000): 20F55, 06A07


Additional Information

Axel Hultman
Affiliation: Department of Mathematics, KTH, SE-100 44 Stockholm, Sweden
Email: axel@math.kth.se

DOI: https://doi.org/10.1090/S0002-9947-07-04070-6
Keywords: Twisted involutions, Bruhat order, weak order, Coxeter complexes
Received by editor(s): November 23, 2004
Received by editor(s) in revised form: April 25, 2005
Published electronically: January 26, 2007
Additional Notes: This work was supported by the European Commission’s IHRP Programme, grant HPRN-CT-2001-00272, “Algebraic Combinatorics in Europe”.
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society