Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Closed timelike geodesics in compact spacetimes


Author: Mohammed Guediri
Journal: Trans. Amer. Math. Soc. 359 (2007), 2663-2673
MSC (2000): Primary 53C50, 53C22
DOI: https://doi.org/10.1090/S0002-9947-07-04127-X
Published electronically: January 19, 2007
MathSciNet review: 2286050
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a compact spacetime which admits a regular globally hyperbolic covering, and $ {\mathcal C}$ a nontrivial free timelike homotopy class of closed timelike curves in $ M.$ We prove that $ {\mathcal C}$ contains a longest curve (which must be a closed timelike geodesic) if and only if the timelike injectivity radius of $ {\mathcal C}$ is finite; i.e., $ {\mathcal C}$ has a bounded length. As a consequence among others, we deduce that for a compact static spacetime there exists a closed timelike geodesic within every nontrivial free timelike homotopy class having a finite timelike injectivity radius.


References [Enhancements On Off] (What's this?)

  • 1. J.K. Beem, P.E. Ehrlich, Global Lorentzian geometry, Pure and Applied Mathematics, Marcel Dekker Inc., 1996. MR 1384756 (97f:53100)
  • 2. V. Benci, D. Fortunato, A. Masiello, On the geodesic connectedness of Lorentzian manifolds, Math. Z. 217 (1994), 73-93. MR 1292174 (96c:58037)
  • 3. E. Caponio, A. Masiello, P. Piccione, Some global properties of static spacetimes, Math. Z. 244 (2003), 457-468. MR 1992019 (2004c:53105)
  • 4. C. Currás-Bosch, Killing vector fields and holonomy algebras, Proc. Amer. Math. Soc. 90 (1984), 97-102. MR 0722424 (85c:53068)
  • 5. S. Gallot, D. Hulin, J. Lafontaine, Riemannian geometry, Universitext, Berlin etc., Springer-Verlag, 1990. MR 1083149 (91j:53001)
  • 6. G.J. Galloway, Closed timelike geodesics, Trans. Amer. Math. Soc. 285 (1984), 379-388. MR 0748844 (85k:53061)
  • 7. G.J. Galloway, Compact Lorentz manifolds without closed nonspacelike geodesics, Proc. Amer. Math. Soc. 98 (1986), 119-123. MR 0848888 (87i:53094)
  • 8. M. Guediri, J. Lafontaine, Sur la complétude des variétés pseudo-riemanniennes, J. Geom. Phys. 15 (1995), 150-158. MR 1310948 (96b:53083)
  • 9. M. Guediri, On the existence of closed timelike geodesics in compact spacetimes, Math. Z. 239 (2002), 277-291. MR 1888225 (2002k:53138)
  • 10. M. Guediri, On the existence of closed timelike geodesics in compact spacetimes. II, Math. Z. 244 (2003), 577-585. MR 1992025 (2004d:53041)
  • 11. M. Guediri, On the nonexistence of closed timelike geodesics in flat Lorentz 2-step nilmanifolds, Trans. Amer. Math. Soc. 355 (2003), 775-786. MR 1932725 (2003f:53058)
  • 12. M. Guediri, Lorentz geometry of 2-step nilpotent Lie groups, Geom. Dedicata 100 (2003), 10-51. MR 2011112 (2004m:53123)
  • 13. S.W. Hawking, G.F.R. Ellis, The large scale structure of spacetime, Cambridge Univ. Press, Cambridge, 1973. MR 0424186 (54:12154)
  • 14. W. Klingenberg, Riemannian geometry, De Gruyter Studies in Mathematics, Berlin, 1982. MR 0666697 (84j:53001)
  • 15. B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983. MR 0719023 (85f:53002)
  • 16. G. Oshikiri, Totally geodesic foliations and Killing fields, Tôhoku Math. J. 35 (1983), 387-392. MR 0711354 (84j:53044)
  • 17. M. Sanchez, Structure of Lorentzian tori with a Killing vector field, Trans. Amer. Math. Soc. 349 (1997), 1063-1080. MR 1376554 (97f:53108)
  • 18. M. Spivak, A comprehensive introduction to differential geometry, Vol. IV, Publish or Perish, Boston, 1975. MR 0394452 (52:15254a)
  • 19. F.T. Tipler, Existence of closed timelike geodesics in Lorentz spaces, Proc. Amer. Math. Soc. 76 (1979), 145-147. MR 0534406 (80f:83016)
  • 20. B. Wegner, Zeitartige Geodätische Schleifen in Kompakten Lorentz-Mannigfaltigkeiten, Mathematical papers given on the occasion of Ernst Mohr's 75th birthday, Tech. Univ. Berlin (1985), 297-306. MR 0809011 (87a:53100)
  • 21. J.A. Wolf, Spaces of constant curvature, Publish or Perish, Boston, 1974.MR 0343214 (49:7958)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53C50, 53C22

Retrieve articles in all journals with MSC (2000): 53C50, 53C22


Additional Information

Mohammed Guediri
Affiliation: Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
Email: mguediri@ksu.edu.sa

DOI: https://doi.org/10.1090/S0002-9947-07-04127-X
Received by editor(s): March 16, 2005
Published electronically: January 19, 2007
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society