Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Cech filtration and monodromy in log crystalline cohomology


Author: Elmar Grosse-Klönne
Journal: Trans. Amer. Math. Soc. 359 (2007), 2945-2972
MSC (2000): Primary 14F30
DOI: https://doi.org/10.1090/S0002-9947-07-04138-4
Published electronically: January 26, 2007
MathSciNet review: 2286064
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a strictly semistable log scheme $ Y$ over a perfect field $ k$ of characteristic $ p$ we investigate the canonical Cech spectral sequence $ (C)_T$ abutting the Hyodo-Kato (log crystalline) cohomology $ H_{crys}^*(Y/T)_{\mathbb{Q}}$ of $ Y$ and beginning with the log convergent cohomology of its various component intersections $ Y^i$. We compare the filtration on $ H_{crys}^*(Y/T)_{\mathbb{Q}}$ arising from $ (C)_T$ with the monodromy operator $ N$ on $ H_{crys}^*(Y/T)_{\mathbb{Q}}$. We also express $ N$ through residue maps and study relations with singular cohomology. If $ Y$ lifts to a proper strictly semistable (formal) scheme $ X$ over a finite totally ramified extension of $ W(k)$, with generic fibre $ X_K$, we obtain results on how the simplicial structure of $ X_K^{an}$ (as analytic space) is reflected in $ H_{dR}^*(X_K)=H_{dR}^*(X_K^{an})$.


References [Enhancements On Off] (What's this?)

  • 1. G. Alon and E. de Shalit, Cohomology of discrete groups in harmonic cochains on buildings, Israel J. of Mathematics, 135 (2003), 355-377 MR 1997050 (2005b:14037)
  • 2. V. Berkovich, An analog of Tate's conjecture over local and finitely generated fields, Internat. Math. Res. Notices 13 (2000), 665-680 MR 1772523 (2001h:14022)
  • 3. B. Chiarellotto, Rigid cohomology and invariant cycles for a semistable log scheme, Duke Math. J. 97 (1999), no.1, 155-169 MR 1682272 (2000f:14029)
  • 4. B. Le Stum and B. Chiarellotto, Sur la pureté de la cohomologie cristalline, C. R. Acad. Sci. Paris, t 326, Série I, 961-963, 1998 MR 1649945 (99f:14024)
  • 5. R. F. Coleman and A. Iovita, The Frobenius and monodromy operators for curves and abelian varieties, Duke Math. J. 97 (1999), no.1, 171-215 MR 1682268 (2000e:14023)
  • 6. E. de Shalit, The $ p$-adic monodromy-weight conjecture for $ p$-adically uniformized varieties, Compos. Math. 141 (2005), no. 1, 101-120. MR 2099771 (2005h:14049)
  • 7. E. Grosse-Klönne, Finiteness of de Rham cohomology in rigid analysis, Duke Math. J. 113 (2002), no.1, 57-91 MR 1905392 (2003g:14026)
  • 8. E. Grosse-Klönne, Compactification of log morphisms, Tohoku Math. J. 56 (2004), 79-104 MR 2028919 (2004m:14032)
  • 9. E. Grosse-Klönne, Frobenius and Monodromy operators in rigid analysis, and Drinfel'd's symmetric space, Journal of Algebraic Geometry 14 (2005), 391-437 MR 2129006 (2005m:14040)
  • 10. O. Hyodo, On the de Rham-Witt complex attached to a semistable family, Comp. Math. 78 (1991), 241-260 MR 1106296 (93c:14022)
  • 11. O. Hyodo and K. Kato, Semi-stable Reduction and Crystalline Cohomology with Logarithmic Poles, Asterisque 223, SMF, Paris (1994), 221-261 MR 1293974 (95k:14034)
  • 12. L. Illusie, Autour du théorème de monodromie locale, Astérisque No. 223, SMF, Paris (1994), 9-57 MR 1293970 (95k:14032)
  • 13. T. Ito, Weight-Monodromy conjecture for $ p$-adically uniformized varieties, Invent. Math. 159 (2005), no. 3, 607-656. MR 2125735 (2005m:14033)
  • 14. F. Kato, Log smooth Deformation Theory. Tohoku Math. J. 48 (1996), 317-354 MR 1404507 (99a:14012)
  • 15. K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic Analysis, Geometry and Number Theory, J. Hopkins Univ. Press (1989), 191-224 MR 1463703 (99b:14020)
  • 16. N. Katz, W. Messing, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23 (1974), 73-77 MR 0332791 (48:11117)
  • 17. R. Kiehl, Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie, Invent. Math. 2 (1967), 256-273 MR 0210949 (35:1834)
  • 18. B. Le Stum, La structure de Hyodo-Kato pour les courbes, Rend. Sem. Mat. Univ. Padova 94 (1995), 279-301. MR 1370917 (97d:14029)
  • 19. A. Mokrane, La suite spectrale des poids en cohomologie de Hyodo-Kato, Duke Math. J. 72 (1993), 301-337 MR 1248675 (95a:14022)
  • 20. Y. Nakkajima, $ p$-adic weight spectral sequences of log varieties, preprint
  • 21. A. Ogus, Logarithmic De Rham cohomology, preprint
  • 22. A. Ogus, $ F$-crystals on schemes with constant log structure. Special issue in honour of Frans Oort, Compositio Math. 97 (1995), 187-225. MR 1355125 (97g:14019)
  • 23. P. Schneider, U. Stuhler, The cohomology of $ p$-adic symmetric spaces, Inv. Math. 105, 47-122 (1991) MR 1109620 (92k:11057)
  • 24. A. Shiho, Crystalline fundamental groups. II. Log convergent and rigid cohomology, J. Math. Sci. Univ. Tokyo 9 (2002), 1-163. MR 1889223 (2003c:14020)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14F30

Retrieve articles in all journals with MSC (2000): 14F30


Additional Information

Elmar Grosse-Klönne
Affiliation: Mathematisches Institut der Universität Münster, Einsteinstrasse 62, 48149 Mün- ster, Germany
Email: klonne@math.uni-muenster.de

DOI: https://doi.org/10.1090/S0002-9947-07-04138-4
Keywords: Logarithmic crystalline cohomology, monodromy operator, weight filtration, Steenbrink complex, analytic spaces
Received by editor(s): January 5, 2005
Received by editor(s) in revised form: July 11, 2005
Published electronically: January 26, 2007
Additional Notes: Most of this work was done during my visit at the University of California, Berkeley. I wish to thank Robert Coleman (and Bishop) for welcoming me there so warmly. Thanks are also due to Ehud de Shalit, Yukiyoshi Nakkajima and Arthur Ogus for useful related discussions. I thank the referee for his careful reading of the manuscript and his suggestions for improving the exposition. I am grateful to the Deutsche Forschungsgemeinschaft for supporting my stay at Berkeley.
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society