Homologous non-isotopic symplectic surfaces of higher genus

Authors:
B. Doug Park, Mainak Poddar and Stefano Vidussi

Journal:
Trans. Amer. Math. Soc. **359** (2007), 2651-2662

MSC (2000):
Primary 57R17, 57M05; Secondary 53D35, 57R95

DOI:
https://doi.org/10.1090/S0002-9947-07-04168-2

Published electronically:
January 4, 2007

MathSciNet review:
2286049

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct an infinite family of homologous, non-isotopic, symplectic surfaces of any genus greater than one in a certain class of closed, simply connected, symplectic four-manifolds. Our construction is the first example of this phenomenon for surfaces of genus greater than one.

**1.**D. Auroux, S. K. Donaldson and L. Katzarkov: Luttinger surgery along Lagrangian tori and non-isotopy for singular symplectic plane curves.*Math. Ann.***326**(2003), 185-203. MR**1981618 (2004c:57039)****2.**S. A. Bleiler, C. D. Hodgson and J. R. Weeks: Cosmetic surgery on knots. Proceedings of the Kirbyfest,*Geometry and Topology Monographs*, Vol. 2 (1999), 23-34. MR**1734400 (2000j:57034)****3.**D. Eisenbud and W. Neumann: Three-Dimensional Link Theory and Invariants of Plane Curve Singularities.*Annals of Mathematics Studies*20, Princeton University Press, Princeton, NJ, 1985. MR**0817982 (87g:57007)****4.**T. Etgü and B. D. Park: Homologous non-isotopic symplectic tori in homotopy rational elliptic surfaces.*Math. Proc. Cambridge Philos. Soc.***140**(2006), 71-78. MR**2197576****5.**T. Etgü and B. D. Park: A note on fundamental groups of symplectic torus complements. Preprint,`http://www.math.uwaterloo.ca/~bdpark/preprint.html`**6.**R. Fintushel and R. J. Stern: Knots, links and 4-manifolds.*Invent. Math.***134**(1998), 363-400. MR**1650308 (99j:57033)****7.**R. Fintushel and R. J. Stern: Symplectic surfaces in a fixed homology class.*J. Differential Geom.***52**(1999), 203-222. MR**1758295 (2001j:57036)****8.**R. Fintushel and R. J. Stern: Nonsymplectic -manifolds with one basic class.*Pacific J. Math.***194**(2000), 325-333. MR**1760784 (2001g:57060)****9.**R. Fintushel and R. J. Stern: Invariants for Lagrangian tori.*Geom. Topol.***8**(2004), 947-968. MR**2087074 (2005h:57046)****10.**R. E. Gompf: A new construction of symplectic manifolds.*Ann. of Math.***142**(1995), 527-595. MR**1356781 (96j:57025)****11.**R. E. Gompf and A. I. Stipsicz: -Manifolds and Kirby Calculus.*Graduate Studies in Mathematics*20, Amer. Math. Soc., Providence, RI, 1999. MR**1707327 (2000h:57038)****12.**W. Jaco: Lectures on Three-manifold Topology.*Regional Conference Series in Mathematics*43, Amer. Math. Soc., Providence, RI, 1980. MR**0565450 (81k:57009)****13.**B. D. Park: Doubling homotopy surfaces.*J. Knot Theory Ramifications***12**(2003), 347-354. MR**1983090 (2004b:57045)****14.**B. Siebert and G. Tian: On the holomorphicity of genus two Lefschetz fibrations.*Ann. of Math.***161**(2005), 955-1016. MR**2153404****15.**I. Smith: Symplectic submanifolds from surface fibrations.*Pacific J. Math.***198**(2001), 197-205. MR**1831978 (2002b:57029)****16.**I. Smith: Review of [7],*Math. Rev.*(2001). MR**1758295 (2001j:57036)****17.**W. P. Thurston:*The Geometry and Topology of Three-Manifolds.*Lecture notes, Princeton University, 1980.`http://www.msri.org/publications/books/gt3m/`**18.**S. Vidussi: Lagrangian surfaces in a fixed homology class: Existence of knotted Lagrangian tori.*J. Differential Geom.***74**(2006), 507-522.**19.**S. Vidussi: Symplectic tori in homotopy 's.*Proc. Amer. Math. Soc.***133**(2005), 2477-2481. MR**2138891 (2006d:57042)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
57R17,
57M05,
53D35,
57R95

Retrieve articles in all journals with MSC (2000): 57R17, 57M05, 53D35, 57R95

Additional Information

**B. Doug Park**

Affiliation:
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Email:
bdpark@math.uwaterloo.ca

**Mainak Poddar**

Affiliation:
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Email:
mpoddar@math.uwaterloo.ca

**Stefano Vidussi**

Affiliation:
Department of Mathematics, University of California, Riverside, California 92521

Email:
svidussi@math.ucr.edu

DOI:
https://doi.org/10.1090/S0002-9947-07-04168-2

Received by editor(s):
February 21, 2005

Published electronically:
January 4, 2007

Additional Notes:
The first author was partially supported by NSERC and CFI/OIT grants.

The third author was partially supported by NSF grant #0306074.

Dedicated:
Dedicated to Ron Fintushel on the occasion of his sixtieth birthday

Article copyright:
© Copyright 2007
American Mathematical Society