Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Nash type inequalities for fractional powers of non-negative self-adjoint operators


Authors: Alexander Bendikov and Patrick Maheux
Journal: Trans. Amer. Math. Soc. 359 (2007), 3085-3097
MSC (2000): Primary 39B62, 47A60, 26A12, 26A33, 81Q10
DOI: https://doi.org/10.1090/S0002-9947-07-04020-2
Published electronically: January 25, 2007
MathSciNet review: 2299447
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Assuming that a Nash type inequality is satisfied by a non-negative self-adjoint operator $ A$, we prove a Nash type inequality for the fractional powers $ A^{\alpha}$ of $ A$. Under some assumptions, we give ultracontractivity bounds for the semigroup $ (T_{t,{\alpha}})$ generated by $ -A^{\alpha}$.


References [Enhancements On Off] (What's this?)

  • [BCLS] D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste, Sobolev inequalities in disguise. Indiana Univ. Math.J. 44 No. 4 (1995), 1033-1074. MR 1386760 (97c:46039)
  • [B] A.D. Bendikov, Symmetric stable semigroups on the infinite dimensional torus. Expo. Math. 13 (1995), 39-80. MR 1339813 (96h:60123)
  • [BSC] A.D. Bendikov and L. Saloff-Coste, On-and off-diagonal heat kernel behaviors on certain infinite dimensional local Dirichlet spaces. Amer. J. Math. 122 (2000), 1205-1263. MR 1797661 (2002b:31012)
  • [BF] Ch. Berg, G. Forst, Potential theory on locally compact Abelian groups. Ergeb. der Math. und ihren Grenzgeb. 94, Springer-Verlag, Berlin-Heidelberg-New York, 1975. MR 0481057 (58:1204)
  • [BGT] N.H. Bingham, C.M. Goldie and J.M. Teugels, Regular variation. Cambridge University Press. Encyclopedia of Mathematics and its applications. Vol. 27. Edited by G.-C.Rota. MR 0898871 (88i:26004)
  • [BM] M. Biroli and P. Maheux, Inégalités de Sobolev logarithmiques et de type Nash pour des semi-groupes sous-markoviens symétriques. Preprint.
  • [C] T. Coulhon, Ultracontractivity and Nash type inequalities. J. Funct. Anal. 141 (1996), p. 510-539. MR 1418518 (97j:47055)
  • [D] E.B. Davies, Heat kernels and Spectral Theory. Cambridge U.P., 92, 1989. MR 0990239 (90e:35123)
  • [F] M. Fukushima, Dirichlet forms and Markov processes. North-Holland, 1981. MR 0569058 (81f:60105)
  • [G] L. Gross, Logarithmic Sobolev Inequalities and Contractivity Properties of Semigroups. in L.N.M 1563 (Varenna, 1992) ``Dirichlet forms''. Ed: G.Dell'Antonio, U.Mosco. MR 1292277 (95h:47061)
  • [He] H. Heyer, Probability Measures on Locally Compact Groups. Ergeb. der Math. und ihren Grenzgeb. 94, Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 0501241 (58:18648)
  • [VSC] N.Th. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups. Cambridge University Press, 1992. MR 1218884 (95f:43008)
  • [Z] V.M. Zolotarev, One-dimensional stable distributions. Transl. of Math. Monographs, AMS, Vol 65, 1986. MR 0854867 (87k:60002)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 39B62, 47A60, 26A12, 26A33, 81Q10

Retrieve articles in all journals with MSC (2000): 39B62, 47A60, 26A12, 26A33, 81Q10


Additional Information

Alexander Bendikov
Affiliation: Mathematical Institute of the Wroclaw University, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland
Email: bendikov@math.uni.wroc.pl

Patrick Maheux
Affiliation: Département de Mathématiques, MAPMO-Fédération Denis Poisson, Université d’Or- léans, BP 6759, F 45 067 Orleans Cedex 2, France
Email: pmaheux@univ-orleans.fr

DOI: https://doi.org/10.1090/S0002-9947-07-04020-2
Keywords: Nash inequality, fractional powers of operators, semigroup of operators, logarithmic Sobolev inequality, ultracontractivity property, Dirichlet form
Received by editor(s): March 11, 2002
Received by editor(s) in revised form: April 11, 2005
Published electronically: January 25, 2007
Additional Notes: This research was partially supported by the European Commission (IHP Network “Harmonic Analysis and Related Problems” 2002-2006, contract HPRN-CT-2001-00273-HARP)
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society