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PARAGEOMETRIC OUTER AUTOMORPHISMS
OF FREE GROUPS

MICHAEL HANDEL AND LEE MOSHER

Abstract. We study those fully irreducible outer automorphisms φ of a finite
rank free group Fr which are parageometric, meaning that the attracting fixed
point of φ in the boundary of outer space is a geometric R-tree with respect
to the action of Fr, but φ itself is not a geometric outer automorphism in that
it is not represented by a homeomorphism of a surface. Our main result shows
that the expansion factor of φ is strictly larger than the expansion factor of
φ−1. As corollaries (proved independently by Guirardel), the inverse of a par-
ageometric outer automorphism is neither geometric nor parageometric, and a
fully irreducible outer automorphism φ is geometric if and only if its attract-
ing and repelling fixed points in the boundary of outer space are geometric
R-trees.

1. Introduction

There is a growing dictionary of analogies between theorems about the mapping
class group of a surface MCG(S) and theorems about the outer automorphism group
of a free group Out(Fr). For example, the Tits alternative for MCG(S) [McC85]
is proved using Thurston’s theory of measured geodesic laminations [FLP79], and
for Out(Fr) it is proved using the Bestvina–Feighn–Handel theory of laminations
([BFH97], [BFH00], [BFH04]).

Expansion factors. Expansion factors Here is a result about MCG(S) of which
one might hope to have an analogue in Out(Fr). Given a finitely generated group
G, its outer automorphism group Out(G) acts on the set of conjugacy classes C of
G. Given c ∈ C let ‖c‖ be the smallest word length of a representative of c. Given
φ ∈ Out(G) define the expansion factor

λ(φ) = sup
c∈C

(
lim sup
n→+∞

‖φn(c)‖1/n

)
.

If φ ∈ MCG(S) ≈ Out(π1S) is pseudo-Anosov, then λ(φ) equals the pseudo-Anosov
expansion factor [FLP79]. By combining results of Thurston and Bers one obtains:

Theorem. If φ ∈ MCG(S) is pseudo-Anosov, then there is a unique φ-invariant
geodesic in Teichmüller space, consisting of the points in Teichmüller space which
minimize the translation distance under φ. This translation distance equals
log(λ(φ)).
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Consider a free group Fr and the Culler-Vogtmann outer space Xr on which
Out(Fr) acts properly. Recall that φ ∈ Out(Fr) is reducible if there is a nontrivial
free decomposition Fr = A1∗· · ·∗Ak∗B such that φ permutes the conjugacy classes
of A1, . . . , Ak; otherwise, φ is irreducible. If φk is irreducible for all k ≥ 1, then we
say that φ is fully irreducible. By analogy, a mapping class on S is reducible if it
preserves the isotopy classes of some nontrivial decomposition of S into essential
subsurfaces, and is fully irreducible if and only if it is represented by a pseudo-
Anosov homeomorphism.

Question: Does the above theorem have an analogue for a fully irreducible φ ∈
Out(Fr)? The question does not quite make sense because no metric is specified on
Xr, but one can instead ask: Is there an analogue with respect to some Out(Fr)-
equivariant metric on Xr? Or on any other metric space on which Out(Fr) acts?

Answer: No. If translation distance for φ is uniquely minimized on an axis
γ, then, by symmetry of the distance function, translation distance for φ−1 is
also uniquely minimized on γ, and the minima for φ and for φ−1 along γ are
equal. By equating minimal translation distance with log(λ), one would conclude
that λ(φ) = λ(φ−1). However, an example from [BH92] has the property that
λ(φ) �= λ(φ−1): consider φ ∈ Out(F3) and φ−1 represented by the automorphisms

Φ:

⎧⎪⎨
⎪⎩

A → AC,

B → A,

C → B,

Φ−1 :

⎧⎪⎨
⎪⎩

A → B,

B → C,

C → BA.

Interpreting these formulas as self maps of the three-petaled rose, each is clearly a
train track map. From the results of [BH92] (see also Proposition 4), if f : G → G
is a train track representative of φ ∈ Out(Fr), and if PF(Mf ) denotes the Perron-
Frobenius eigenvalue of the transition matrix Mf , then λ(φ) = PF(Mf ). For the
above two train track maps we therefore obtain

λ(φ) = PF

⎛
⎝1 0 1

1 0 0
0 1 0

⎞
⎠ > 1.4, λ(φ−1) = PF

⎛
⎝0 1 0

0 0 1
1 1 0

⎞
⎠ < 1.4.

Confronted with such a strange phenomenon, one strategy is to see what appro-
priately weaker results can be proved. We follow this strategy in the companion
paper [HM04a] where we show that the ratio log(λ(φ))/ log(λ(φ−1)) is bounded by
a constant depending only on the rank r. This is what one would expect if there
were an axis γ for φ with translation distance log(λ(φ)) and an axis γ′ for φ−1 with
translation distance log(λ(φ−1)), such that γ, γ′ are fellow travelers. Encouraged by
this result, we have pursued the study of axes in outer space, with some interesting
analogues of uniqueness of axes [HM04b].

Parageometric outer automorphisms. In this work we pursue another strat-
egy: explore the strange phenomenon on its own terms. The φ described above
turns out to be an example of a parageometric outer automorphism, as we discov-
ered by comparing discussions of this same example in [BF95] and in [BF]. The
interest in this concept was pointed out in [GJLL98], where we found the terminol-
ogy “parageometric”.

While we believe that the phenomenon λ(φ) �= λ(φ−1) is generic among fully
irreducible outer automorphisms φ, we shall show that inequality always holds
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when φ is parageometric, in fact we give an explicit geometric argument which
shows that λ(φ) > λ(φ−1).

To define parageometricity, recall the action of Out(Fr) on the compactified outer
space X r = Xr ∪ ∂Xr consisting of (classes of) very small actions of Fr on R-trees
(see [CL95] for simplicial R-trees and [BF] for nonsimplicial R-trees); we shall call
these objects “Fr-trees”. The action of a fully irreducible φ ∈ Out(Fr) on X r has
source–sink dynamics, with a repelling Fr-tree T− ∈ ∂Xr, and an attracting Fr-tree
T+ ∈ ∂Xr (see [BFH97] for orbits in Xr and [LL03] for orbits in ∂Xr). An Fr-tree
is geometric if it is dual in the appropriate sense to a measured foliation defined
on some 2-complex whose fundamental group surjects to Fr [LP97]. For example,
if a fully irreducible φ ∈ Out(Fr) is geometric, meaning that it is represented by
an automorphism of a surface with boundary, then both of the Fr-trees T−, T+ are
geometric: this follows from Thurston’s theorem that φ is represented by a pseudo-
Anosov surface homeomorphism f : S → S, because T− and T+ are dual to the
stable and unstable measured foliations of f defined on the surface S.

A fully irreducible φ ∈ Out(Fr) is said to be parageometric if T+ is a geometric
Fr-tree but φ is not a geometric outer automorphism.

For example, the outer automorphism φ described above is parageometric: geo-
metricity of the Fr-tree T+ is proved in Example 3.4 of [BF]; and Levitt’s “thinness”
property for T− is proved in Example 10.1 of [BF95], showing that T− is not a geo-
metric Fr-tree, and so φ is not a geometric outer automorphism. In Proposition 6
we will gather results of [BF] and [BH92] which give a method of characterizing
parageometricity solely from the properties of a train track representative.

Here are our main results:

Theorem 1. If φ ∈ Out(Fr) is parageometric, then λ(φ) > λ(φ−1).

Corollary 2. If φ ∈ Out(Fr) is parageometric, then φ−1 is neither geometric nor
parageometric.

Proof. If φ−1 is geometric, then λ(φ−1) = λ(φ), whereas if φ−1 is parageometric
λ(φ−1) > λ((φ−1)−1) = λ(φ). �

Corollary 3. A fully irreducible φ ∈ Out(Fr) is geometric if and only if the Fr-
trees T− and T+ are both geometric.

Proof. If φ is not geometric, then φ−1 is also not geometric, but if T−, T+ were
both geometric trees, then it would follow by definition that φ and φ−1 are both
parageometric, contradicting Corollary 2. The other direction was noted above. �

Corollaries 2 and 3 have been proved independently by Guirardel [Gui04], by
different means.

Theorem 1 and Corollary 2 were first presented at various seminars in the fall
of 2003, including the Topology Seminar at Princeton University. Our thanks go
to Baris Coskunuzer from that seminar for a question which quickly inspired the
proof of the “if” direction of Corollary 3.

Sketch of the proof of Theorem 1. After some preliminaries in Section 2, in Sec-
tion 3 we recall results from [BF] that characterize when T+ is a geometric Fr-tree:
this happens if and only if some positive power of φ has a train track representative
g : G → G such that G has a unique illegal turn, g has a unique periodic Nielsen
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path ρ (up to reversal), and Length(ρ) = 2 Length(G). When ρ exists, it is neces-
sarily a fixed Nielsen path, meaning that ρ is fixed up to homotopy rel endpoints by
the action of g. Also, ρ decomposes at its illegal turn into ρ = α ∗ β̄ where α, β are
legal paths of length equal to Length(G). In this situation, following [BF] we con-
struct a 2-dimensional dynamical system k : K → K representing φ, which we call
the wedge model ; a detailed description of the wedge model is given in Section 3.4.
The 2-complex K is obtained by attaching to G a wedge W , a triangle with one
side attached along α and the other side attached along β. The unattached side
of W is vertical, and each vertical segment of W has endpoints on a corresponding
pair of points, one in α and one in β. The effect of g : G → G is to fold ρ by some
amount, and this extends to a homotopy equivalence k : K → K whose effect on W
is to collapse some vertical segments of W . The vertical segments of W form leaf
segments of a measured foliation Fs on K called the stable foliation of the wedge
model k : K → K. The graph G is transverse to the stable foliation, and the re-
striction to G of the transverse measure on the stable foliation equals the Lebesgue
measure along the train track G. Following [BF], in this situation we show that the
attracting tree T+ is the dual tree of the measured foliation Fs. Combining this
construction with results of [BH92], we show that φ is parageometric if and only if
the two endpoints of ρ are distinct. Moreover, in this case there exists an edge of
G which is covered exactly once by the Nielsen path ρ, and so is a free edge of the
2-complex K. This simple observation, proved in Fact 8, plays a key role in the
proof of Theorem 1.

In Section 4 we carry out a detailed study of Fs, the stable foliation of the wedge
model. We shall show that leaves of Fs are trees, but they turn out to be trees of
a rather thorny variety: these leaves have lots of valence 1 vertices, occuring in the
interior of edges of G that are free edges of the 2-complex K. We are particularly
interested in the collection of bi-infinite lines contained in leaves of Fs, which we
denote H(Fs), the hull of Fs. We shall use properties of k : K → K to essentially
identify H(Fs) with the expanding lamination of φ−1.

Theorem 1 is proved in Section 5 by studying the asymptotic compression rate
of k on lines of H(Fs), defined to be the exponential growth rate in n of the size
of a subarc of a line of H(Fs) that kn collapses to a point. We compute this
rate in several different ways. On the one hand, since H(Fs) is identified with
the expanding lamination of φ−1, the asymptotic compression rate of k on lines of
H(Fs) is equal to λ(φ−1). On the other hand, the abundance of valence 1 vertices
in leaves of Fs shows that the asymptotic compression rate of k on lines in H(Fs) is
strictly less than the exponential growth rate in n for the size of a subtree of a leaf
of Fs that kn collapses to a point. The latter rate is simply the Perron-Frobenius
eigenvalue of the transition matrix for g : G → G, which equals λ(φ). This is the
culminating argument of the proof that λ(φ−1) < λ(φ).

When does λ(φ) = λ(φ−1)?. Consider a fully irreducible φ ∈ Out(Fr). In the
wake of our results one might wonder whether λ(φ) = λ(φ−1) implies that φ is
geometric. Here is an easy construction of counterexamples: fully irreducible outer
automorphisms φ which are not geometric and yet which satisfy λ(φ) = λ(φ−1); by
Theorem 1, neither is such a φ parageometric.

In any group G, if g, g′ ∈ G have order 2, then gg′ and (gg′)−1 are conjugate.
It follows that if Ψ, Ψ′ ∈ Out(Fr) have order 2, and if φ = ΨΨ′ is fully irreducible,
then λ(φ) = λ(φ−1).
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For a concrete example, let Ψ ∈ Out(F3) be the order two element represented
by the automorphism a 	→ b, b 	→ a, c 	→ c. Let Ψ′ = ΘΨΘ−1 be a conjugate
of Ψ. If the conjugating element Θ is picked randomly, then one might expect that
φ = ΨΨ′ is fully irreducible and has a train track representative with no periodic
Nielsen paths, and so φ is nongeometric. Taking Θ to be the fourth power of the
outer automorphism a 	→ b, b 	→ c, c 	→ b̄a considered earlier, and applying the train
track algorithm of [BH92], one obtains the following train track map g : G → G
representing φ. The graph G has two vertices r, q, four edges B, C, D, E, with B
from q to r, C from r to q, D from r to q, and E from q to q, and g is defined
by g(B) = CĒC̄DE, g(C) = C̄B̄ĒD̄, g(D) = B, and g(E) = CB. The expansion
factor is λ = 3.199158087 . . ..

To verify that g represents a nongeometric, fully irreducible outer automorphism
it is sufficient to check three things. First, the transition matrix of g is positive.
Second, at each of the two vertices v = r, q of G, the graph of turns taken at v
is connected; this is the graph with one vertex for each oriented edge with initial
vertex v, and one edge for each pair of oriented edges E1 �= E2 with initial vertex v
such that the g image of some oriented edge of G contains the subpath Ē1E2. Third,
g has no periodic Nielsen paths, which can be checked by the following expedient.
Factor g into Stallings folds, G = G0 → G1 → · · · → Gn = G; we did this with
n = 8. Let E0 be the set of length 2 edge paths in G0 with an illegal turn; there
are two such paths up to reversal, ED̄ and ĒB. For negative integers i define Ei

inductively to be a set of edge paths in Gi (with indices taken modulo n), each with
one illegal turn, as follows: for each γ ∈ Ei, take all paths in Gi−1 with exactly one
illegal turn whose straightened image in Gi is γ, and put each such path in Ei−1.
Carrying this process out, we computed that the set E−12 is empty. This shows
that g has no Nielsen paths, and so it represents a fully irreducible, nongeometric
outer automorphism.

Just as a check, we also inverted the sequence of Stallings folds and applied the
train track algorithm to verify that the expansion factor of the inverse is also equal
to 3.199158087 . . ..

To get wider classes of examples, consider a fully irreducible φ ∈ Out(Fr) with
expanding lamination denoted Λu. By Section 2 of [BFH97] the group Out(Fr)
acts on the set of expanding laminations of fully irreducible elements, and there
is a homomorphism 	u : Stab(Λu) → R+ with discrete image and finite kernel
such that 	u(φ) = λ(φ), and 	u(Ψ) = λ(Ψ) as long as 	u(Ψ) ≥ 1. Applying
this to φ−1 with expanding lamination denoted Λs, we obtain a homomorphism
	s : Stab(Λs) → R+ such that 	s(φ−1) = λ(φ−1) and 	s(Ψ) = λ(Ψ) as long as
	s(Ψ) ≥ 1. Applying Proposition 2.16 of [BFH00] it follows that Stab(Λs) =
Stab(Λu), a subgroup of Out(Fr) that we denote Vφ. From the properties of the
homomorphisms 	u, 	s : Vφ → R+ it follows that the infinite cyclic group 〈φ〉 has
finite index in Vφ, and so any two elements of Vφ not contained in the common kernel
of 	s, 	u have nonzero powers that are equal. This implies that if λ(φ) = λ(φ−1),
then λ(Ψ) = λ(Ψ−1) for any Ψ ∈ Vφ. Note that Vφ is the virtual centralizer of 〈φ〉
in Out(Fr), consisting of all Ψ ∈ Out(Fr) that commute with some positive power
of φ; Vφ is contained in the virtual centralizer because 〈φ〉 has finite index in Vφ;
and if Ψ �∈ Vφ, then ΨφkΨ−1 �= φk because their attracting fixed points in ∂Xr are
distinct, by Proposition 2.16 of [BFH00].
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It might be interesting to find necessary and sufficient conditions for the condition
λ(φ) = λ(φ−1), for fully irreducible φ ∈ Out(Fr). For example, is it necessary that
Vφ contains a fully irreducible element that is either geometric or conjugate to its
own inverse?

At the very least, it would seem that the property λ(φ) �= λ(φ−1) is generic, and
the property that φ be fully irreducible with nongeometric fixed trees T−, T+ is also
generic. We invite the reader to take a random word of, say, twenty or more Nielsen
generators of Out(F3) and verify that the resulting outer automorphism φ is fully
irreducible, neither geometric nor parageometric, and satisfies λ(φ) �= λ(φ−1).

2. Preliminaries

2.1. Outer automorphisms and outer space. The definitions in this section
follow several sources. For the foundations of marked graphs, R-trees, and outer
space, including many of the facts recalled below without citation, see [CM87] and
[CV86]. For concepts of irreducibility see [BH92]. A good overview is given in
[Vog02].

Outer automorphisms of free groups. Fix an integer r ≥ 2, let Fr denote the
free group of rank r, let Out(Fr) = Aut(Fr)/ Inn(Fr) denote its outer automorphism
group, and let C denote its set of nontrivial conjugacy classes. Let Rr denote the rose
with r-petals and identify π1(Rr) ≈ Fr, so the group Out(Fr) is identified with the
group of homotopy classes of self-homotopy equivalences of Rr. Given φ ∈ Out(Fr)
let fφ : Rr → Rr be a representative homotopy equivalence. Out(Fr) acts naturally
on C, and on conjugacy classes of subgroups of Fr. We say that φ ∈ Out(Fr) is
reducible if there exists a nontrivial free factorization Fr = A1 ∗ · · · ∗Ak ∗B so that
φ permutes the conjugacy classes of A1, . . . , Ak. If φ is not reducible, then it is
irreducible. If φn is irreducible for all n ≥ 1 then φ is fully irreducible.1 Note that
φ is irreducible if and only if φ−1 is, and the same for fully irreducible.

Outer space and its boundary. An Fn-tree is an R-tree T equipped with an
action of Fn that is minimal (no proper nonempty subtree is invariant) and nonele-
mentary (T is not a point or a line). An Fr-tree is proper if the action is properly
discontinuous, and it is simplicial if T is a simplicial complex. Two Fn trees are
isometrically (resp. homothetically) conjugate if there is an isometry (resp. homo-
thety) between them that conjugates one action to the other. Outer space Xr is
the set of homothetic conjugacy classes of proper, simplicial Fn-trees, with topol-
ogy induced by embedding Xr → PRC as follows: first embed the set of isometric
conjugacy classes into RC using translation length as a class function on Fn, and
then projectivize. The image of this embedding is precompact, and its closure and
boundary are denoted X r and ∂Xr = X r −Xr.

Points of outer space can also be represented as marked graphs, as follows. A
marked graph is a graph G with all vertices of valence ≥ 3, equipped with a path
metric, and with a homotopy equivalence Rr → G called the marking. If a base
point p ∈ G happens to be imposed, the homotopy class of a marking of G deter-
mines and is determined by an isomorphism Fr → π1(G, p) up to precomposition
by an inner automorphism of Fr. Two marked graphs G, G′ are isometric (resp.
homothetic) if there exists an isometry (resp. homothety) G → G′ which, together
with the markings, makes the following diagram commute up to homotopy:

1Called “irreducible with irreducible powers” or “IWIP” in the literature.
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G
��

Rr
�� �� G′

Passage to the universal covering space induces a bijection between the set of ho-
mothety classes of marked graphs and the set Xr. The embedding Xr → PRC can
be understood by first associating to a marked graph G the class function on Fn

that associates to an element of Fn the length of the shortest loop in G representing
the free homotopy class of that element, and then projectivizing.

The length of an object in a geodesic metric space is denoted Length(·), with
a subscript to denote the metric space when the context is not clear, for example
LengthG(·) in the marked graph G. Also, when a marked graph G is clear from the
context then we use the constant L to denote Length(G).

The group Out(Fr) acts on X r on the right, as follows. Let [·] denote homothety
class. For each Fr-tree T one can precompose the action Fr → Isom(T ) with
an automorphism Fr → Fr representing φ, to get [T ]φ. In terms of a marked
graph G, one can precompose the marking Rr → G with a homotopy equivalence
Rr → Rr that represents φ, to obtain [G]φ. This action preserves the topology, and
it preserves outer space Xr itself and its boundary ∂Xr.

Source–sink dynamics. If φ ∈ Out(Fr) is fully irreducible, then there exist
T− �= T+ ∈ ∂Xr such that for every x ∈ X r,

lim
n→−∞

φn(x) = T− and lim
n→+∞

φn(x) = T+

where these limits take place in X r. This was proved for x ∈ Xr in [BFH97] and
extended to all x ∈ X r in [LL03]. We call T− the repelling tree and T+ the attracting
tree of φ.

Geometric Fr-trees. We review measured foliations on 2-complexes and geomet-
ric trees following [LP97].

Consider a connected simplicial 2-complex K which is not a point. A measured
foliation on K is defined by specifying measured foliations on each 2-simplex of
K which fit together compatibly along 1-simplices. To be precise, a measured
foliation on a 1 or 2 dimensional simplex σ in K is determined by choosing a
simplicial homeomorphism σ′ → σ where σ′ is a rectilinear simplex in R2, and
pushing forward the vertical foliation on R2 with the transverse measure |dx|. A
leaf segment in σ is the pushforward of σ′ intersected with a vertical line; for
example, if σ is a 1-simplex, then either σ is a single leaf segment or each point of
σ is a leaf segment. A measured foliation on a 2-simplex restricts to a measured
foliation on each of its edges. A measured foliation on K is determined by choosing
a measured foliation on each 2-simplex of K, so that for each 1-simplex e, all of the
measured foliations on e obtained by restricting to e from a 2-simplex incident to
e agree with each other.

We will often suppress the simplicial structure on K, so a measured foliation on
a cell complex means, formally, a measured foliation on some simplicial subdivision.

Let F denote a measured foliation on K, and F
∣∣ σ its restriction to each simplex

σ of K. The collection of leaf segments in 1-simplices and 2-simplices define a rela-
tion on K, two points being related if they are contained in the same leaf segment.
This relation generates an equivalence relation on K. The equivalence classes are
called leaves. The leaf containing a point x ∈ K can be built up inductively as
follows: let 	1 be the union of all leaf segments containing x; for i ≥ 1 let 	i+1 be
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the union of all leaf segments containing points of 	i; finally, the leaf containing x
is

⋃∞
i=1 	i.

Given a measured foliation F on K and a path γ : I → K, pulling back the
tranverse measure locally gives a measure on I, whose integral is denoted

∫
γ
F .

Given a finite 2-complex K with measured foliation F and a surjective homo-
morphism h : π1(K) → Fr, let K̃ → K be the covering space corresponding to
ker(h), and let F̃ be the lifted measured foliation on K̃. Define a pseudo-metric on
K̃ where d(x, y) is the infimum of the transverse measures of paths from x to y.
Let T be the associated metric space, whose points are the equivalence classes de-
termined by the relation d(x, y) = 0. Note that if x, y are in the same leaf of K̃,
then d(x, y) = 0, but the converse need not hold in general. The action of Fr on
K̃ induces an isometric action of Fr on the metric space T . We assume that each
1-simplex e of K̃ is a geodesic, that is, if ∂e = {v, w}, then d(v, w) =

∫
e
F̃ . Under

this assumption, Levitt and Paulin [LP97] prove that T is an Fr-tree, called the
dual Fr-tree of the measured foliation F .

An Fr-tree T is said to be geometric if there exists a finite 2-complex K with
measured foliation F , and a surjective homomorphism π1(K) → Fr, such that each
edge of K̃ is a geodesic, and such that T is isometrically conjugate to the dual
Fr-tree of F .

Geometric and parageometric outer automorphisms. An outer automor-
phism φ ∈ Out(Fr) is geometric if there exists a compact surface S, an isomorphism
Fr ≈ π1S, and a homeomorphism h : S → S, such that the outer automorphism
of Fr induced by h is equal to φ. If φ is fully irreducible and geometric, then its
attracting and repelling Fr-trees T+, T− are both geometric Fr-trees.

Consider now a fully irreducible φ ∈ Out(Fr) with attracting Fr-tree T+ ∈ ∂Xr.
We say that φ is parageometric if T+ is a geometric Fr-tree but φ is not a geometric
outer automorphism.

2.2. Train tracks and laminations. The definitions in this section follow [BH92]
and [BFH97].

Topological representatives and Markov partitions. Given φ ∈ Out(Fr), a
marked graph G with marking µ : Rr → G, and a homotopy equivalence g : G → G,
we say that g is a topological representative of φ if g takes vertices to vertices, g is
an immersion on each edge, and the following diagram commutes up to homotopy:

Rr

fφ ��

µ

��

Rr

µ

��
G g

�� G

and so the composition Rr → G
g−→ G represents the point [G]φ ∈ Xr. The set of

edges E of G forms a Markov partition for g, meaning that for any e, e′ ∈ E , each
component of e ∩ g−1(int(e′)) is mapped by g homeomorphically onto int(e′). The
transition graph T G of g is a directed graph whose vertex set is the set E , such that
for each e, e′ ∈ E , the directed edges from e to e′ are in one-to-one correspondence
with the components of e∩ g−1(int(e′)). The transition matrix of g is the function
M : E ×E → Z, where M(e, e′) equals the number of directed edges in T G from e
to e′, in other words, the number of times that g(e′) traverses e in either direction.
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Note that Mn(e, e′) is the number of directed paths from e to e′ of length n. We
say that T G, M , and g : G → G are irreducible if there is an oriented path from any
vertex of T G to any other vertex, equivalently, for all e, e′ there exists n such that
Mn(e, e′) �= 0. If irreducibility holds, then the Perron-Frobenius theorem implies
that there exists a unique λ ≥ 1 such that M has a positive (right) eigenvector
with eigenvalue λ. If M has the stronger property that some positive power has
all positive entries, then λ > 1 and a positive eigenvector is unique up to positive
scalar multiple.

Train tracks. A direction of G at a vertex v is the germ, up to reparameterization,
of an immersed path with initial point v. Each direction is uniquely represented
by an oriented edge e with initial point v, but we occasionally use other paths
with initial point v to represent directions. A turn of G at v is an unordered pair
{e, e′} of directions at v; the turn is nondegenerate if e �= e′, otherwise the turn is
degenerate.

An edge path in G will always mean a concatenation of the form γ = e0 ∗e1 ∗· · ·∗
ek−1 ∗ ek, k ≥ 0, where e1, . . . , ek−1 are oriented edges and e0, ek are subsegments
of oriented edges. Often we say “path” when “edge path” is meant; the context
should make this clear. Given an edge path γ : I → G and t ∈ int(I) so that γ(t) is
a vertex of G, let e, e′ be the two directions of γ at this point, that is, subdivide at
t to obtain a concatenation γ = α ∗β, let e be the direction of ᾱ at its initial point,
and let e′ be the direction of β at its initial point. With this notation we say that
γ takes the turn {e, e′} at the parameter value t. If t is understood, then we just
say that γ takes the turn {e, e′}.

A topological representative g : G → G acts on the set of directions and on the set
of turns of G. A nondegenerate turn is illegal if its image under some positive power
of g is degenerate, otherwise the turn is legal. An edge path α is legal if every turn
taken by α is legal, in particular every legal path is immersed. Given a path α in
G, let α# denote the immersed path (or constant path) which is homotopic to α rel
endpoints, so if α is immersed, then α# = α, and if α is legal, then gn(α)# = gn(α)
for all n ≥ 0.

A topological representative g : G → G of φ ∈ Out(Fr) is a train track rep-
resentative of φ, and g is a train track map, if for each edge E of G, the map
g

∣∣ E : E → G is a legal path, equivalently, gn
∣∣ E is an immersion for each n ≥ 1.

A train track map g is fully irreducible if gn is irreducible for all n ≥ 1.

Proposition 4 ([BH92]). If φ ∈ Out(Fr) is fully irreducible, then φ has a fully
irreducible train track representative g : G → G. The transition matrix Mg has a
positive power, and so there exists λ(g) > 1 and vector v : E → R, with λ(g) unique
and v unique up to a positive scalar multiple, so that Mv = λ(g)v. We also have
λ(φ) = λ(g) (see Remark 1.8 of [BH92]).

With g : G → G as in this proposition, we may assign a path metric to G, also
called the Lebesgue measure on G, so that each edge e has length LengthG(e) =
v(e). We may then alter g on each edge e by homotopy rel endpoints so that g

∣∣ e
stretches path length by a constant factor of λ(g); the resulting map is still a train
track map. The number λ(g) = λ(φ) is called the stretch factor of g.

Henceforth we always assume without comment that if g : G → G is a train track
representative of a fully irreducible φ ∈ Out(Fr), then g is fully irreducible and g
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stretches path length on G by the constant factor λ(φ). It follows that for any legal
path γ the legal path g(γ)# = g(γ) has length equal to λ(φ) Length(γ).

The geodesic lamination of a free group. In this heading and the next we
review the results from [BFH97] concerning the construction and properties of the
expanding or unstable lamination Λu(φ) of a fully irreducible φ ∈ Out(Fr). Here
we use a slightly different point of view than in [BFH97], presenting laminations as
Hausdorff objects rather than non-Hausdorff.

Consider a marked graph G with universal cover T . The geodesic lamination of
T , denoted ΛT , is the set of pairs (	, x) where 	 ⊂ T is a bi-infinite, unoriented
line and x ∈ 	, equipped with the compact open topology where a neighborhood
Uε of (	, x) is the set of all (	′, x′) such that d(x, x′) ≤ ε and 	 ∩ 	′ contains a 1/ε
neighborhood of x in 	 and a 1/ε neighborhood of x′ in 	′. The projection map
ΛT → T is the map (	, x) → x. A leaf of ΛT corresponding to a bi-infinite line 	
is the set of all (	, x) such that x ∈ 	; we shall often confuse a bi-infinite line in
T with its corresponding leaf. A point of ΛT can also be described as a geodesic
embedding γ : R → T modulo precomposition by the involution x ↔ −x, where
the point of ΛT corresponding to γ is the pair (γ(R), γ(0)). The action of Fr on T
induces a properly discontinuous, cocompact action on ΛT whose quotient space, a
compact lamination denoted ΛG, is the geodesic lamination of G. The projection
map ΛT → T descends to a projection map ΛG → G. An element of ΛG can
also be described as a locally geodesic immersion R → G modulo precomposition
by the involution x ↔ −x on the parameter domain R. A sublamination of any
lamination is a closed subset that is a union of leaves. By compactness of ΛG, every
sublamination of ΛG is compact.

Given two marked graphs G, G′, any homotopy equivalence g : G → G′ induces
a homeomorphism g∗ : ΛG → ΛG′ well defined up to isotopy, defined as follows.
First alter g by homotopy so that it takes vertices to vertices and is affine on
each edge. Lift g to the universal covers g̃ : T = G̃ → G̃′ = T ′. There is an
automorphism Φ: Fr → Fr such that g satisfies Φ-twisted equivariance, meaning
that f(g(x)) = g(Φ(f)(x)) for all x ∈ T , f ∈ Fr. Consider a leaf 	 of ΛT . Since g̃
is a quasi-isometry, g̃(	) is a quasi-geodesic embedding of R, and so the image g̃(	)
has finite Hausdorff distance from some leaf that we shall denote g̃∗(	). Define a
function g̃# : ΛT → ΛT ′ that maps each leaf 	 to g̃∗(	), by postcomposing the map
g̃ with the closest point projection from g̃(	) onto g̃∗(	). The map g̃# is continuous,
Φ-twisted equivariant, and induces a bijection of leaves. The image of the map
	 → g̃(	) is the line g̃∗(	) union a disjoint set of finite trees attached to the line,
and the effect of the closest point projection is to collapse each of these finite trees
to the point where it attaches to the line; it follows that the map g̃# is leafwise

monotonic, meaning that for each leaf 	 the map 	
g̃#−−→ g̃∗(	) has the property that

each point pre-image is an arc. We can now perturb g̃# to get a homeomorphism
g̃∗, still satisfying Φ-twisted equivariance, and g̃∗ is well-defined up to Φ-twisted
equivariant isotopy. It follows that g̃∗ descends to the desired homeomorphism g∗,
well-defined up to isotopy.

For any g : G → G′ as above that preserves the marking (in the sense that
the marking Rr → G, postcomposed with g, is homotopic to the marking Rr →
G′), note that the map g̃∗ : ΛG → ΛG′ is natural in the sense that for any two

homotopy equivalences G
g−→ G′ g′

−→ G′′ that preserve markings, the composition
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ΛG
g∗−→ ΛG′

g′
∗−→ ΛG′′ is isotopic to (g′ ◦ g)∗. We are therefore justified in talking

about “the” geodesic lamination Λr of Fr, as represented by ΛG for any marked
graph G. We are also justified in talking about a sublamination Λ′ ⊂ Λr of the
geodesic lamination of Fr, represented as a sublamination Λ′

G ⊂ ΛG for any marked
graph G, with the property that for any marking preserving homotopy equivalence
g : G → G′ we have g∗(Λ′

G) = Λ′
G′ . We also say that Λ′

G is the realization of Λ′ in
the marked graph G.

Expanding laminations. Let φ ∈ Out(Fr) be fully irreducible. The expanding
or unstable lamination of φ is a sublamination Λu(φ) of the geodesic lamination of
Fr, defined as follows. Choose any train track representative g : G → G. Choose
an edge e and a periodic point x ∈ int(e) of periodicity p. As n → ∞, the maps

e
gnp

−−→ G can be reparameterized as a nested sequence of isometric immersions of
larger and larger subintervals of R, each interval containing 0 and each immersion
taking 0 to x. The union of these immersions is a bi-infinite geodesic in G, that
is, a leaf of ΛG. The closure of this leaf in ΛG is defined to be the realization of
Λu = Λu(φ) in the marked graph G, denoted Λu

G. Λu is well-defined, independent
of the choice of e and x, and also independent of g meaning that for any other train
track representative g′ : G′ → G′ and any marking preserving homotopy equivalence
h : G → G′ we have h∗(Λu

G) = Λu
G′ .

The expanding lamination Λu(φ) is minimal, meaning that its only nonempty
sublamination is itself, in other words, every leaf is dense; see Section 1 of [BFH97].
Also, the projection from Λu

G to G is surjective for any train track representative
g : G → G, because some power of g has positive transition matrix.

Note that the action of g∗ on ΛG restricts to an action on Λu
G which expands

length by the exact factor of λ(φ), that is, Length(g∗(	)) = λ(φ) Length(	) for any
leaf segment 	 of Λu

G.

3. Geometric trees and the wedge model

Let φ ∈ Out(Fr) be fully irreducible with attracting Fr-tree T+. The primary
goal of this section is to characterize when T+ is a geometric tree, and to use this
characterization as an opportunity for introducing the wedge model of φ, which will
play such an important role in later sections. We will also obtain a characterization
of parageometricity of φ. Both characterizations are stated in terms of train track
representatives of φ and its positive powers. These characterizations are restate-
ments and reworkings of results in [BF] and in [BH92]. We provide full details of
the proof, in part because of the limited availability of [BF], but also because of
our need to develop a complete description of the wedge model.

The reader who wants to skip quickly to the definition of the wedge model should
first read Section 3.1 and then Section 3.4, skipping Sections 3.2 and 3.3, although
Section 3.2 will be needed to understand geometricity of T+.

3.1. Nielsen paths. Consider a train track map g : G → G. A (fixed) Nielsen path
of g is a locally geodesic path ρ : [a, b] → G such that ρ(a) and ρ(b) are fixed points,
and g ◦ ρ is homotopic rel endpoints to ρ. A periodic Nielsen path of g is a Nielsen
path of some power gn with n ≥ 1. A (periodic) Nielsen path ρ is indivisible
if it cannot be written as a nontrivial concatenation of (periodic) Nielsen paths.
Assuming that g is irreducible, every indivisible periodic Nielsen path has a unique
legal decomposition ρ = α∗ β̄ where α, β : [0, b] → G are legal paths of equal length,
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and ρ takes an illegal turn at the concatenation point. Depending on the context
we may write this decomposition in other forms, for example, ρ = α1 ∗ α2. For
details on Nielsen paths see [BH92].

The following result is essentially proved in [BH92] using the theory of stable
train tracks. We say that a surjective map α : A → B is generated by a relation
σ ⊂ A×A if the equivalence relation generated by σ has equivalence classes identical
to the point pre-images of f .

Proposition 5. If φ ∈ Out(Fr) is fully irreducible, then there exists k ≥ 1 and a
train track representative g : G → G of φk such that one of the following holds:

(1) g has no periodic Nielsen paths.
(2) (a) g has an indivisible periodic Nielsen path ρ unique up to orientation

reversal, ρ is a fixed Nielsen path, the image of ρ is all of G, the
illegal turn taken by ρ is the unique illegal turn of g, and Length(ρ) =
2 Length(G).

(b) Letting the legal decomposition be ρ = α∗β̄ with α, β : [0, Length(G)] →
G, the map g is generated by the relation

α(t) ∼ β(t) for t ∈ [Length(G)/λ, Length(G)].

A train track map g : G → G satisfying (2) is said to be Nielsen unique.

Proof. We briefly review the theory of stable train tracks. Let g : G → G be a train
track representative of φ, let ρ = α ∗ β̄ be an irreducible Nielsen path, and suppose
that the illegal turn of ρ is immediately folded by g. Now apply Stalling’s method
of factoring g: let Eα, Eβ be maximal initial oriented segments of ᾱ, β̄, respectively,
such that each of Eα, Eβ is contained in a single edge of G, and the paths g(Eα)

and g(Eβ) in G are the same; and then factor g as g = h ◦ f where G
f−→ G′ h−→ G,

the graph G′ is the quotient of G obtained by identifying Eα and Eβ to a single
arc, f : G → G′ is the quotient map, and h : G′ → G is induced by g under the
quotient map f . The map g′ = f ◦ h : G′ → G′ is a train track representative of φ,
obtained from g by folding the irreducible Nielsen path ρ. This fold is said to be full
if either Eα or Eβ is an entire edge. Note that a sufficient condition for fullness to
fail is if the Nielsen path ρ = α ∗ β̄ is small, meaning that each of the paths α, β̄ is
a subarc of some edge. We note that the indivisible periodic Nielsen paths of g and
of g′ are in one-to-one, periodic preserving correspondence: paths σ, σ′ correspond
in this way if σ′ = (f ◦ σ)#.

A train track representative g : G → G of φ is unstable if there exists a sequence
of train train representatives g = g0, g1, . . . , gk such that each gi is obtained from
the previous gi−1 by folding an irreducible Nielsen path, and the fold from gk−1

to gk is not full. If g is not unstable, then g is stable. It follows that any train
track representative obtained from a stable train track representative by folding
an irreducible Nielsen path is also stable. Stability of g implies that one of the
following statements holds:

(1′) g has no indivisible fixed Nielsen paths.
(2a′) g has an indivisible fixed Nielsen path ρ = ᾱ ∗ β unique up to orientation

reversal, the image of ρ is all of G, the illegal turn in ρ is the unique illegal
turn of g, and Length(ρ) = 2 Length(G).

For these statements see Section 3 of [BH92], particularly Lemma 3.9 of [BH92],
and for the proof that the image of ρ is all of G see the top of page 28 of [BH92].
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We turn to the proof of items (1) and (2a). Let g′ : G′ → G′ be any train
track representative of φ. From [BFH00] Lemma 4.2.5, g′ has only finitely many
indivisible periodic Nielsen paths. Pass to a power of g′ so that all indivisible pe-
riodic Nielsen paths of g′ are fixed. In [BH92], a procedure is described which,
from g′, produces a stable train track representative g : G → G, and so g satis-
fies items (1′) and (2a′). But we need to replace the word “fixed” by the word
“periodic” in these items. We do this by using some of the details of the stabiliza-
tion procedure, described in Section 3 of [BH92], which produces g from g′. The
output of the stabilization procedure is a sequence of train track representatives
g′ = g0, g1, . . . , gN = g so that for each n = 1, . . . , N one of two possibilities holds.
In one case, gn is obtained from gn−1 by folding an indivisible Nielsen path of gn−1;
in this case the indivisible periodic Nielsen paths of gn−1 and of gn are in one-to-one,
period preserving correspondence, as noted above. In the other case, gn is obtained
from gn−1 by an operation that eliminates a small indivisible Nielsen path, and the
remaining indivisible periodic Nielsen paths of gn−1 that are not eliminated are in
one-to-one period preserving correspondence with the indivisible periodic Nielsen
paths of gn. Since all indivisible periodic Nielsen paths of g′ are fixed, the same is
true for each gn. Since gN = g has at most one indivisible fixed Nielsen path, it
has at most one indivisible periodic Nielsen path, which if it exists is fixed. This
proves items (1) and (2a).

Now we prove item (2b). By inductively applying Stallings fold factorization to
the map g : G → G we obtain a sequence of maps

G0
f1−→ G1

f2−→ · · · fK−−→ GK
h−→ G0

where each fi is an edge isometric fold that preserves marking, and h is a homothety.
For k = 1, . . . , K − 1 define gk : Gk → Gk to be

gk = fk ◦ · · · ◦ f1 ◦ h ◦ fK ◦ · · · ◦ fk+1

and define gK : GK → GK to be gK = fK ◦ · · · ◦ f1 ◦ h. Starting with ρ0 = ρ,
for each k = 1, . . . , K inductively define a path ρk in Gk by ρk = (fk ◦ ρk−1)# =
(fk ◦ · · · ◦ f1 ◦ ρ)#.

We prove inductively that for each k = 1, . . . , K, the map gk is a stable train
track representative of φ with a unique indivisible periodic Nielsen path ρk, and gk

is obtained from gk−1 by folding ρk−1 — in other words, the turn folded by fk is
the illegal turn taken by ρk−1. Assuming this is true for k − 1, the turn of Gk−1

folded by the map h ◦ fK ◦ · · · ◦ fk : Gk−1 → G0 is an illegal turn for gk−1, but
by stability gk−1 has a unique illegal turn, namely the illegal turn taken by the
Nielsen path ρk−1, and so gk is obtained from gk−1 by folding ρk−1. This implies
that gk is a stable train track representative of φ. Moreover, ρk = (fk ◦ ρk−1)# is
an indivisible Nielsen path for gk, and by stability ρk is unique.

Since the Nielsen path ρk = αk ∗ β̄k is obtained from ρk−1 = αk−1 ∗ β̄k−1 by
folding initial oriented segments of ᾱk−1 and β̄k−1, we can describe the situation
in the following manner. Noting that Length(α0) = Length(β0) = 1

2 Length(ρ0) =
Length(G), there exists a partition

0 < RK ≤ RK−1 ≤ · · · ≤ R1 < R0 = Length(G)
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such that

αk = fk ◦ αk−1

∣∣ [0, Rk],

βk = fk ◦ βk−1

∣∣ [0, Rk]

and the oriented segments αk−1

∣∣ [Rk, Rk−1] and βk−1

∣∣ [Rk, Rk−1] are the segments
of αk−1 and βk−1 that are folded by fk. In other words, fk is generated by the
relation αk−1(t) ∼ βk−1(t) for t ∈ [Rk, Rk−1]. It now follows by induction that
the map fk ◦ · · · ◦ f1 : G0 → Gk is generated by the relation α0(t) = β0(t) for t ∈
[Rk, Length(G)]: what one needs for the induction step is that for any composition

of surjective maps A
α−→ B

β−→ C, if the relation σ on A generates α, if the relation
τ on B generates β, and if the relation τ ′ on A is mapped onto the relation τ
by the map α × α : A × A → B × B, then the relation σ ∪ τ ′ generates β ◦ α.
Since the maps g = g0 and fK ◦ · · · ◦ f1 differ by the homeomorphism hK , it
follows that g is generated by the relation that generates fK ◦ · · · ◦ f1, namely the
relation α(t) ∼ β(t) for t ∈ [RK , Length(G)]. Since ρ = (g ◦ ρ)#, since Length(ρ) =
2 Length(G), and since g stretches path length by λ, a short calculation shows that
RK = Length(G)/λ. �

We can now state the results that characterize geometricity of T+ and parageo-
metricity of φ. These characterizations are restatements of results from [BF] and
[BH92].

Proposition 6. Suppose that φ ∈ Out(Fr) is fully irreducible with attracting tree
T+, and let g : G → G be a train track representative of a positive power of φ
satisfying case (1) or (2) of Proposition 5.

(1) If g satisfies case (1) of Proposition 5 — if g has no periodic Nielsen paths
— then the tree T+ is nongeometric.

(2) If g satisfies case (2) of Proposition 5 — if g is Nielsen unique — then the
tree T+ is geometric.

When g is Nielsen unique, letting ρ : [0, 2 Length(G)] → G be the Nielsen path, we
have:

(3) φ is geometric if and only if ρ is a closed path. In this case ρ traverses
every edge of G exactly twice.

(4) φ is parageometric if and only if ρ is not a closed path. In this case ρ
traverses some edge of G exactly once, and ρ traverses some other edge of
G at least thrice.

The proofs of items (1) and (2) will be carried out in the remainder of Section 3.
First, in Section 3.2, we give a direct limit construction which produces the tree T+

out of the train track map g; this leads quickly to a proof of item (1) in Section 3.3.
Then, in Section 3.4, we describe the wedge model which applies to the Nielsen
unique case; this leads to the proof of item (2) in Section 3.5.

We start with:

Proof of items (3) and (4), assuming (1) and (2). Let g : G → G be a Nielsen
unique train track representative of a positive power of φ. Item (3) was proved
in [BH92]. Combined with item (2), it immediately follows that φ is parageometric
if and only if ρ is not closed.
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Suppose that φ is parageometric. If ρ traverses every edge of G at least twice,
then using Length(ρ) = 2 Length(G) it follows that ρ traverses every edge exactly
twice, but that implies that ρ is closed, a contradiction. It follows that ρ traverses
some edge E at most once. On the other hand, by Proposition 5, item (2) the path
ρ traverses each edge of G at least once, and so ρ traverses E exactly once. Using
again that Length(ρ) = 2 Length(G) it follows that ρ traverses some other edge at
least thrice. This proves item (4). �

3.2. Direct limits. Let φ ∈ Out(Fr) be fully irreducible with attracting tree T+,
and let g : G → G be any train track representative of φ. Here we describe a
method for constructing T+ from g. From a more well known point of view, T+

is the Gromov–Hausdorff limit of the universal covering trees T0, T1, T2, . . . of the
sequence of marked graphs G = G0, G1, G2, . . . given inductively by [Gi] = [Gi−1]φ.
Here we shall recast this point of view, instead making use of direct limits. In this
section we give a preliminary description of the direct limit of Ti in the category of
semimetric spaces and distance nonincreasing maps; this direct limit is denoted T#.
Then, in Section 3.3 we study the case that g satisfies item (1) of Proposition 5,
and in Sections 3.4 and 3.5 we study the case that g satisfies item (2); in both cases
we will verify that the metric space associated to the semimetric space T# is the
direct limit of Ti in the category of metric spaces and distance nonincreasing maps,
and we will use this information to identify the metric space direct limit with T+.

Consider the sequence in Xr defined by [G0] = [G], [Gi] = [Gi−1]φ. The under-
lying unmarked and unmetrized graphs G = G0, G1, G2, . . . are all identical, and
the map g : G → G is rewritten as gi : Gi → Gi+1. We then define a marking
Rr → Gi, given inductively by postcomposing the marking Rr → Gi−1 with the
map gi−1. It follows that each map gi : Gi → Gi+1 respects markings (up to ho-
motopy). We also define a metric on Gi, given inductively as the unique metric
such that gi−1 maps each edge of Gi−1 locally isometrically to Gi. It follows that
Length(Gi+1) = Length(Gi)/λ(φ). There is a homothety hi : G → Gi that com-
presses Lebesgue measure by a factor of λ(φ)−i such that the following composition
equals gi:

(3.1) G = G0
g0−→ G1

g1−→ · · · gi−1−−−→ Gi
h−1

i−−→ G.

Note that since the maps g0, . . . , gi−1 all respect marking, the map gi−1 ◦ · · · ◦ g0 =
hi ◦ gi : G → Gi also respects marking, and so the homothety h−1

i : Gi → G and
the map gi : G → G change marking by exactly the same outer automorphism,
namely φi.

Let Ti be the universal cover of Gi, so we may regard Ti as an Fr-tree. Choose
lifts of the maps gi to obtain a sequence of surjective equivariant maps

(3.2) T0
g̃0−→ T1

g̃1−→ T2
g̃2−→ · · ·

such that g̃i maps each edge of Ti isometrically onto an arc of Ti+1. Each map
g̃i : Ti → Ti+1 is therefore distance nonincreasing. Since [Ti] = [Ti−1]φ as points
of Xr, and since T+ is the attracting point in X r of each forward orbit of φ on Xr

[BFH97], it follows that limi→∞ Ti = T+ in X r.
Let T# denote the direct limit of the sequence (3.2). Set theoretically, this is

the set of equivalence classes of the disjoint union of T0, T1, T2, . . ., where xi ∈ Ti

is equivalent to xj ∈ Tj if there exists k ≥ i, j such that xi, xj have the same
image in Tk, that is, g̃k−1 ◦ · · · ◦ g̃i(xi) = g̃k−1 ◦ · · · ◦ g̃j(xj). Let [xi] ∈ T# denote
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the equivalence class of xi ∈ Ti. By surjectivity of the maps g̃i, for each i each
equivalence class has the form [xi] for (at least) some xi ∈ Ti. Define a semimetric on
T# by the formula dT#([xi], [yi]) = limi→∞ dTi

(xi, yi) where by induction we define
xi = g̃i−1(xi−1) and similarly for yi; the formula is clearly well-defined independent
of the choice of a representative in T0 of a given point in T#, and the limit exists
because dTi

(xi, yi) is a nonincreasing sequence of positive numbers. The actions of
Fr on the trees Ti induce an isometric action of Fr on T#. The map xi → [xi]
is an Fr-equivariant surjective function q#

i : Ti → T#. This argument shows that

T# is in fact the direct limit of the sequence T0
g̃0−→ T1

g̃1−→ · · · , in the category
of semimetric spaces with an isometric Fr-action and distance nonincreasing maps
which are Fr-equivariant.

In order to understand T# more precisely we need a result from [BFH00]. Fix
i ≥ 0 and an immersed arc or circle γi in Gi, and inductively define γj+1 = (gj◦γj)#
for j ≥ i. As long as γj is a nondegenerate path, the number of illegal turns in γj is
nondecreasing as a function of j. It follows that either γj is eventually degenerate
or the number of illegal turns in γj eventually stabilizes.

Lemma 7 (Lemma 4.2.6 of [BFH00]). With the notation as above, assume that
γj is not eventually degenerate, and choose J so that for j ≥ J the number of
illegal turns in γj is constant. Then for each j ≥ J the immersion γj is a legal
concatenation of legal paths and Nielsen paths. �

By a “legal concatenation” we mean that the turn at each concatenation point
is a legal turn.

3.3. No Nielsen path, strong convergence, and the proof of (1). We are
now in a position to prove item (1) of Proposition 6. Let φ ∈ Out(Fr) be fully
irreducible and suppose that g : G → G is a train track representative of a positive
power of φ such that g has no periodic Nielsen path.

Using Lemma 7 together with the nonexistence of Nielsen paths it follows that,
given i and a sequence of immersed arcs or circles γj in Gj defined for all j ≥ i
such that γj+1 = (gj ◦ γj)#, there exists J such that either γj is legal for all j ≥ J ,
or γj is degenerate for all j ≥ J . This has several consequences.

First we show that the semimetric space T# described in Section 3.2 is actually
a metric space. Consider two distinct points of T#, represented by a pair of points
in Ti that are connected by a geodesic γi. Inductively define γj+1 = (gj ◦ γj)# for
j ≥ i. Since the endpoints of γi map to distinct points in T#, the path γj is not
eventually degenerate, and so it is eventually legal. It follows that Length(γj) is
a positive constant for j ≥ J , and this constant equals the semimetric distance in
T# between the two given points of T#. In other words, the distance between an
arbitrary pair of distinct points in T# is positive, so T# is a metric space.

Next, the metric space T# is an R-tree, because the defining conditions for an
R-tree metric are closed conditions [CM87]. Moreover, T# is a minimal R-tree.
To see why, it suffices to prove that each point of T# lies on a bi-infinite geodesic.
Consider a point of T# represented by xi ∈ Ti. The image of xi downstairs in
Gi lies on some leaf of the expanding lamination of φ, because the expanding
lamination realized in Gi projects surjectively to Gi. Lifting this leaf we obtain a
bi-infinite legal geodesic in Ti containing xi, and the image of this geodesic in T#

is a bi-infinite geodesic containing [xi]. Since [xi] is arbitrary in T#, this proves
minimality of T#.
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Next, by applying Lemma 7 to loops in Gi it follows that the sequence of trans-
lation distance functions for the Fr-trees Ti converges to the translation distance
function on T#, from which it immediately follows that T# = T+.

Finally, applying Lemma 7 again to the geodesic γi between any two points in
Ti, if these two points map to distinct points in T#, then for sufficiently large j

the path γj is legal and so embeds isometrically in T# = T+ under q#
i . But this

is precisely the definition of strong convergence of the sequence of Fr-trees Ti to
the Fr-tree T+. By the main result of [LP97] it follows that the tree T+ is not
geometric.

3.4. Definition of the wedge model and its stable foliation Fs. Suppose now
that g : G → G is a Nielsen unique train track representative of (a positive power
of) a fully irreducible φ ∈ Out(Fr). Let ρ : [0, 2L] → G be the unique Nielsen path
of g, where L = Length(G), and let ρ = α ∗ β̄ be the legal decomposition of ρ.

The wedge model is an extension of the train track map g : G → G to a homotopy
equivalence k : K → K, where K is the 2-complex obtained from G by attaching
a disc W to G, and identifying an arc on the boundary of W with the path ρ.
The description of k requires imposing on W the structure of a “wedge”. From
this structure we will also obtain a measured foliation on K denoted Fs, called
the stable foliation of k. The action of k preserves leaves of Fs and multiplies the
transverse measure by λ(φ). In Section 3.5 we will exhibit geometricity of T+ by
proving that T+ is dual to Fs.

Choose locally isometric parameterizations α, β : [0, L] → G. The wedge W =
�ABC is the triangle in R2 with vertices A = (0, +1), B = (0,−1), C = (L, 0).
The attaching maps are (x, y) 	→ α(x) for (x, y) ∈ AC, and (x, y) 	→ β(x) for
(x, y) ∈ BC. The 2-dimensional cell complex K is obtained by attaching W to G
in this manner. The 1-skeleton of K is equal to G union the base AB of W , with
identifications A ∼ α(0) and B ∼ β(0). The dihedral valence in K of a 1-cell E of
K is the total number of times that E is traversed by the attaching maps of the
2-cells of K; by definition E is a free edge if its dihedral valence equals 1. Note
that AB is a free edge of K. Also, any edge E of G has dihedral valence equal
to the number of times that ρ traverses G. By collapsing W from the free edge
AB we obtain a deformation retraction of K onto G, and so we may regard the
2-complex K as being marked by the homotopy equivalence Rr → G ↪→ K, where
Rr → G is the given marking of the marked graph G. We may therefore identify
π1(K) ≈ π1(G) ≈ π1(Rr) ≈ Fr.

The measured foliation Fs is induced by the vertical measured foliation on
W equipped with the transverse measure |dx|. To check compatibility along the
1-skeleton, observe that for each edge E of G, among the segments of AC∪BC that
map onto E, the measures obtained on E by pushing forward |dx| via the attaching
map all agree with the usual Lebesgue measure on E.

Now we define the extension k : K → K of g : G → G. Subdivide W = P ∪ W ′

where P is the subtrapezoid of W with one base AB = W ∩ {x = 0} and with
parallel base W ∩ {x = L/λ(φ)}, and W ′ is the subwedge W ′ = W − P . We call
W ′ the collapsed subwedge of W for reasons about to become apparent. Define k
to take P onto W , stretching the x-coordinate by λ(φ), and for 0 ≤ x0 ≤ L/λ(φ)
contracting the y-coordinate of vertical segment P ∩ {x = x0} by a factor of c(x0),
where c(x) is the unique affine function satisfying c(0) = 1, c(L/λ(φ)) = 0. In W ′,
for L/λ(φ) ≤ x0 ≤ L the vertical segment W ′∩{x = x0} is mapped by k to the point
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g(α(x0)) = g(β(x0)); the latter equation follows from the definition of an indivisible
Nielsen path. This completes the definition of the wedge model k : K → K.

We note a few facts about k which will be important in what follows, and which
are simple consequences of item (2) of Proposition 5:

• k(x) = g(x) for each x ∈ G, so k is continuous.
• k is a homotopy equivalence of K, and the induced outer automorphism on

π1(K) ≈ Fr is φ.
• For each x ∈ K, the set k−1(x) is described as follows:

– If x ∈ K − G, then k−1(x) is a point in K − G.
– If x ∈ G, then k−1(x) is either a point in G or a finite, connected

graph whose edges are a (uniformly) finite union of vertical segments
of the subwedge W ′.

– Every vertical segment of W is eventually collapsed by some power of
k, except for the base AB; this follows because in the Nielsen path
ρ = α ∗ β̄, with α, β : [0, L] → G, for each t ∈ (0, L] there exists i ≥ 1
such that gi(α(t)) = gi(β(t)).

To understand the description of k−1(x), note that the map k is defined by col-
lapsing to a point each of the vertical segments of the subwedge W ′. The relation
described in item (2b) of Proposition 5, which generates the map g, is exactly the
same as the relation of endpoint pairs of vertical segments of the collapsed subwedge
W ′. It follows that for each x ∈ G, the set k−1(x) is a finite, connected union of
vertical segments of W ′: the vertices of this graph are the points of g−1(x), a uni-
formly finite set, and each point of G is an endpoint of a uniformly finite number
of segments of W ′, so k−1(x) is a uniformly finite connected graph. The graph
k−1(x) can therefore be described by picking some vertical segment 	0 of W ′, then
inductively defining 	i be the union of 	i−1 with all vertical segments of W ′ that
touch 	i−1, and then taking the union of the 	i to obtain k−1(x).

Let K0 = K and let Ki be the marked 2-complex similarly obtained from
the marked graph Gi by attaching a wedge along the Nielsen path. The ho-
motopy equivalence k : K → K induces a marking preserving homotopy equiva-
lence ki : Ki → Ki+1 that agrees with gi : Gi → Gi+1. Note that the homothety
hi : G → Gi defined earlier extends to a homeomorphism also denoted hi : K → Ki

such that the composition K = K0
k0−→ K1

k1−→ · · · ki−1−−−→ Ki
h−1

i−−→ K equals ki.
Letting Fs

0 = Fs, there is a measure foliation Fs
i defined inductively on Ki as

the pushforward of Fs
i−1 via the map ki−1. Note that under the homeomorphism

hi : K → Ki, Fs
i is the pushforward of Fs with transverse measure multiplied by

λ(φ)−i. Lifting to universal covers, we obtain a 2-complex K̃i containing the tree
Ti, and an action of Fr on K̃i extending the action on Ti. The map g̃i : Ti → Ti+1

extends to a map k̃i : K̃i → K̃i+1 that is a lift of ki : Ki → Ki+1. There is an
Fr-equivariant measured foliation F̃s

i on K̃i that is the lift of Fs
i as well as the

pushforward of F̃s
i−1 via k̃i−1.

3.5. Proof of (2): duality of Fs and T+. Given a fully irreducible φ ∈ Out(Fn)
with attracting tree T+, in this section we prove item (2) of Proposition 6: that
under the assumption of Nielsen uniqueness, T+ is a geometric Fr-tree.

Recall the notation: g : G → G is a Nielsen unique train track representative of
φi for some i > 0, with Nielsen path ρ. From the constructions of Section 3.4, let
k : K → K be a wedge model extension of g, with wedge W attached to G along
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ρ to obtain K. Let Fs be the stable measured foliation of k on the 2-complex K,
induced by the vertical measured foliation on W .

Recall also the sequence (3.1) of marked graphs and marked homotopy equiv-
alences G = G0

g0−→ G1 → · · · , the universal cover sequence (3.2) of Fr-trees and

Fr-equivariant maps T0
g̃0−→ T1 → · · · , and T# the direct limit of this sequence

in the category of Fr-semimetric spaces and Fr-equivariant distance nonincreasing
maps.

Let L denote the leaf space of the measured foliation F̃s, with Fr-equivariant
semimetric dL defined as follows. Recall the semimetric d

K̃
(x, y) on K̃, defined

by integrating the transverse measure of F̃s along paths connecting x to y and
taking the infimum. When x, y are in the same leaf of Fs, clearly d

K̃
(x, y) = 0 by

integrating along a leaf segment connecting x to y. The semimetric d
K̃

therefore
induces a well-defined semimetric dL on L. Also, the Fr-map from K̃ to the dual
R-tree of Fs factors as the composition of the natural quotient Fr-map K̃ → L
and a surjective Fr-map from L to the dual R-tree.

We shall prove geometricity of T+ by proving that T+ is equivariantly isometric
to the dual Fr-tree of Fs — the metric space associated to the semimetric d

K̃
on

K̃. We proceed indirectly, working with the semimetric space T# instead of the
tree T+, and with the leaf space L of F̃s instead of the dual Rr-tree of Fs.

Define an Fr-equivariant surjective map α : T# → L as follows: for x ∈ T0

representing [x] ∈ T#, α[x] is the leaf of F̃s passing through x. To see that α
is well defined, note that for x, y ∈ T0 we have [x] = [y] if and only if x, y have
the same image in some Ti, which occurs if and only if there exists a sequence of
vertical segments of the wedge W connecting x to y each of which are eventually
collapsed by k̃, but this implies that x, y are in the same leaf of F̃s.

We claim that:
(A) The map α : T# → L is distance preserving.

To prove this, consider x0, x
′
0 ∈ T0 contained in respective leaves 	, 	′ ∈ L of the

measured foliation F̃s, and let ξ = [x0], ξ′ = [x′
0] ∈ T#, so α(ξ) = 	 and α(ξ′) = 	′.

Define inductively xi = g̃i−1(xi−1) and similarly for x′
i. Let γi be the geodesic

in Ti between xi and x′
i, so the sequence LengthTi

(γi) is nonincreasing and has
limit dT#(ξ, ξ′). Choosing ε > 0, for sufficiently large I we have LengthTI

(γI) ≤
dT#(ξ, ξ′) + ε. Starting with ρI = γI , inductively define a path ρi in Ki for i =
I − 1, . . . , 0 as follows: at any point where ρi+1 does not pull back continuously to
K̃i, one can interpolate a leaf segment of F̃s

i , producing a continuous path ρi in K̃i

connecting xi to x′
i, such that

∫
ρi
F̃s

i =
∫

ρi+1
F̃s

i+1. We therefore have∫
ρ0

F̃s
0 =

∫
ρI

F̃s
I = LengthTI

(γI) < dT#(ξ, ξ′) + ε.

Letting ε → 0, it follows that dL(α(ξ), α(ξ′)) ≤ dT#(ξ, ξ′). For the opposite in-
equality, choosing ε > 0 let ρ0 be a continuous path in K̃ from x0 to x′

0 so that∫
ρ0

F̃s ≤ dT (	, 	′) + ε/2. Without increasing the integral along ρ0 we may rewrite
it as a concatenation of immersed paths in T0 and vertical segments of wedges. In-
ductively define the path ρi in K̃i as k̃i−1 ◦ ρi−1, which has the effect of collapsing
certain vertical wedge segments of ρi−1, and so Length(ρi) = Length(ρi−1). By
induction, Length(ρi) = Length(ρ0). For sufficiently large i, say i ≥ I, all vertical
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wedge segments of ρ0 have been collapsed in ρi except for those which are lifts of
the base AB of the wedge W ; let γi be the path in Ti obtained from ρi be replacing
each such vertical segment with the associated Nielsen path. For i ≥ I the number
of these Nielsen paths is constant, and their length goes to zero as i → ∞, and so
for sufficiently large i we have

dT#(ξ, ξ′) ≤ Length(γi) ≤ Length(ρi) + ε/2 < dT (	, 	′) + ε.

This proves the claim.
We claim next that:

(B) For each ξ, ξ′ ∈ T#, α(ξ) = α(ξ′) if and only if dT#(ξ, ξ′) = 0.

If dT#(ξ, ξ′) �= 0, then the previous claim shows that dL(α(ξ), α(ξ′)) �= 0 and
so α(ξ) �= α(ξ′). To prove the converse, suppose that dT#(ξ, ξ′) = 0. Choosing
x0, x

′
0 ∈ T0 so that ξ = [x0], ξ′ = [x′

0], we must prove that the points x0, x
′
0 are

contained in the same leaf of F̃s. Define inductively xi = g̃i−1(xi−1) and similarly
for x′

i. Let γi be the geodesic between xi and x′
i in Ti. Applying Lemma 4.2.6

of [BFH00] (Lemma 7 above), for sufficiently large i, say i ≥ I, the path γi is
a legal concatenation of legal paths and Nielsen paths. As i ≥ I increases, the
lengths of the legal paths in γi stay the same, while the number of Nielsen paths is
constant and their lengths go to zero. It follows that dT#(ξ, ξ′) = 0 only if γi has
no legal paths for i ≥ I, that is, γI is a concatenation of Nielsen paths. We may
therefore connect xI to x′

I by a path ρI in K̃I entirely contained in a leaf of F̃s
I .

Now proceeding inductively as in the earlier claim, for i = I, I − 1, . . . , 0 we obtain
a path ρi in K̃i entirely contained in a leaf of F̃s

i connecting xi to x′
i, and taking

i = 0 it follows that α(ξ) = α(ξ′).
From the above two claims we can draw the conclusion that the semi-metric

on L is a metric: if 	, 	′ ∈ L and dL(	, 	′) = 0, then, choosing ξ ∈ α−1(	) and
ξ′ ∈ α−1(	′), claim (A) implies that dT#(ξ, ξ′) = 0, and claim (B) implies that
	 = α(ξ) = α(ξ′) = 	′. It immediately follows, from the definition of L, that L is
equal to the associated metric space of the semimetric on K̃, in other words, L is
equal to the dual tree of Fs. It also immediately follows that the map α identifies
L with the metric space associated to the semimetric on T#. Moreover, we know
exactly which distinct pairs of points in T# have distance zero, namely, those pairs
ξ, ξ′ represented by x0, x

′
0 ∈ T0 contained in the same leaf 	 of F̃s

0 so that x0 and
x′

0 are separated from each other in 	 by the lifts of AB in 	.
To complete the proof that T+ is geometric, we must check that the translation

distance function of the Fr-tree L is the limit of the translation distance functions
of the Fr-trees Ti, for that will identify L with T+. Consider c ∈ C represented
by an immersed closed curve γ0 in G0. Inductively define γi = (gi ◦ γi−1)#, so
LengthGi

(γi) is the translation length of c in Ti. By Lemma 7, for sufficiently large
i, say i ≥ I, γi is a legal concatenation of legal paths and Nielsen paths, where the
number of Nielsen paths is a constant independent of i and their lengths go to zero,
so lim

(
LengthGi

(γi)
)

is equal to the total length of the portion of γi which is not
in one of the Nielsen paths, the latter number being independent of i. Let Ai ⊂ Ti

be an axis of (any representative of) c acting on Ti. The map Ai → T# → L = T+

has the effect of folding each Nielsen path in Ai into a segment in T#, and mapping
the rest of Ai onto the axis A+ of c in T+. It follows that a fundamental domain
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for A+ has length equal to the length of a fundamental domain for Ai minus the
Nielsen paths, which equals lim

(
LengthGi

(γi)
)
.

This completes the proof of Proposition 6.

Local topology of the wedge model. When a fully irreducible outer automor-
phism φ ∈ Out(Fr) has a geometric attracting tree T+, there are some interesting
connections between the behavior of φ and the topology of the wedge model K. For
instance, when φ is geometric then K is a surface with one boundary component;
this is proved in [BH92].

When φ is parageometric, we shall need the following fact, an immediate conse-
quence of Proposition 6(4) and the construction of the wedge model. This fact will
play a crucial role in the proof of Theorem 1.

Fact 8. If φ ∈ Out(Fr) is parageometric, if g : G → G is a Nielsen unique train
track representative of a positive power of φ, and if k : K → K is the wedge model
for g, then some edge of G is a free edge of K, and some edge has dihedral valence ≥
3. �

4. The stable foliation of the wedge model

In this section we fix a fully irreducible, parageometric outer automorphism
φ ∈ Out(Fr), a Nielsen unique train track representative g : G → G, and the wedge
model k : K → K of g, and we study the stable foliation Fs of k, a k-invariant
foliation of the 2-complex K whose leaves are compressed by the action of k. The
main result, Proposition 17, says that the set of bi-infinite lines in Fs, called the
hull of Fs, can be identified with the leaves of the expanding lamination of φ−1.
The results of this section are closely related to results found in [BF]. Indeed, we
believe that Proposition 17 can be proved by the Rips machine methods of [BF],
but we have developed a different proof.

4.1. The stable foliation. For each x ∈ K the leaf of Fs through x is called the
stable leaf of x, denoted Fs

x. We can build Fs
x up inductively: let 	0 = x, define 	i

inductively as the union of 	i−1 with all vertical segments of W that intersect 	i−1,
and then Fs

x =
⋃

i 	i. Note that Fs
x is a locally finite, connected 1-complex with

vertex set Fs
x ∩G and whose edges are vertical segments of the wedge W . An edge

path in the leaf Fs
x is therefore a concatenation of a consecutive sequence of vertical

segments of W , and the number of such segments is called the leafwise length of
the edge path. Any p, q ∈ Fs

x ∩ G are connected by an edge path in Fs
x, and the

smallest leafwise length of such a path is called the leafwise distance between p
and q. As we will see in Fact 12 below, each leaf Fs

x is a tree, so the minimal
edge path [p, q] between vertices p, q ∈ Fs

x is unique, and the number of edges on
this path is denoted LengthK [p, q], called the leafwise distance between p and q.
Notice that we do not measure LengthK using lengths of segments in the Euclidean
triangle representation W = �ABC. One should beware that the leafwise distance
between p and q is not a continuous function, when regarded as a function on the
set of ordered pairs (p, q) ∈ G × G such that p, q are contained a common leaf of
Fs

x, because as p, q vary in G the edge path [p, q] could vary in such a way that it
passes over the apex of W where the leafwise distance jumps discontinuously.

For each x ∈ G the valence of the leaf Fs
x at x equals the number of times that

ρ passes over x except at an endpoint or the midpoint of the domain of ρ. If x is in
the interior of an edge E of K, this number is just the dihedral valence of E in K.
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Since there are only finitely many vertices, it follows that there is a uniform upper
bound for the valences of all vertices in all leaves of Fs

x.
One point of confusion is the fact that, near the apex of the wedge W , the

vertical segments of W get shorter and shorter, and it may seem possible that such
segments could accumulate in a leaf of Fs

x. This is not possible, however, because
of local finiteness of the complex K: if v is the vertex of K to which the apex of
W is identified, and if U is a small neighborhood of v in K, then for every vertical
segment α of W contained in U , and for every vertical segment α′ of W such that
α and α′ share a common endpoint, the segment α′ is not contained in U ; see also
the end of the proof of Lemma 11. In fact one sees that the path topology on each
leaf Fs

x, which has as basis the path components of Fs
x ∩ U over all open subsets

U ⊂ K, is the same as the CW-topology on the simplicial complex Fs
x.

From the definition of Fs and the map k it is clear that k preserves the folia-
tion Fs, mapping each leaf Fs

x onto the leaf Fs
k(x), inducing a bijection of leaves.

The next fact (almost) justifies the terminology “stable foliation” for Fs. Define
the strong stable set of x ∈ K to be

Fss
x = {y ∈ K

∣∣ ∃i ≥ 0 s.t. ki(x) = ki(y)}.

Fact 9 (The stable foliation). Two points x, y ∈ K are in the same leaf of Fs if
and only if there exists i ≥ 0 such that ki(x) = ki(y) or ki(x), ki(y) ∈ AB. It
follows that for each x ∈ K we have:

(1) If AB �⊂ Fs
x, then Fss

x = Fs
x.

(2) If AB ⊂ Fs
x, then the following hold:

(a) If x �∈ int(AB), then Fss
x is the component of Fs

x − int(AB) that con-
tains x.

(b) If x ∈ int(AB), then Fss
x = {x}.

Proof. This follows immediately from the observation that for any vertical segment
γ of the wedge W , there is a power of k collapsing γ to a point if and only if
γ �= AB. �

Fact 10 (Stable leaves are infinite). Each leaf of Fs is an infinite 1-complex.

Proof. By Fact 9, for each x ∈ G and each n ≥ 0, the vertex set of the leaf of Fs

through x contains the set g−n(gn(x)), whose cardinality goes to infinity as n → ∞
since the transition matrix of g is Perron–Frobenius. �
4.2. The structure of stable leaves. Consider the universal covering spaces
G̃ ⊂ K̃ of G ⊂ K. Let F̃s be the foliation of K̃ obtained by lifting Fs.

Given a leaf 	 of F̃s, we study the structure of 	 by considering a locally embedded
finite edge path p in 	. Since p is an edge path, it starts and ends on G̃. Let the
sequence of points of intersection of p with G̃ be denoted x0, x1, . . . , xJ where J is
the leafwise length of p. For example, one question we want to answer is whether
	 is a tree, which is true if and only if x0 �= xJ for all nontrivial edge paths p in 	;
see Fact 12. Another question is whether 	 is quasi-isometrically embedded in K̃,
which is true if and only if the map i 	→ xi is a quasi-isometric embedding Z → K̃;
see Fact 14.

We establish further notation regarding p. For each j = 1, . . . , J , the segment
of the path p from xj−1 to xj is a vertical segment in a lift of the wedge, and so
there exists a lift ρj : [0, 2L] → G̃ of ρ or ρ̄, and there exists tj ∈ [0, L), such that
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xj−1 = ρj(L − tj) and xj = ρj(L + tj). Let Vj = ρj(L) ∈ G̃ be the point at which
ρj makes its unique illegal turn. The geodesic xj−1 xj in G̃ is a path of length 2tj
obtained from ρj by truncating the initial and final segments of length L− tj , and
so xj−1 xj = αj ∗ β̄j concatenated at the illegal turn at Vj with αj , βj legal paths
of length tj .

As a final remark, note in the discussion above that for each j = 1, . . . , J − 1,
since the subpath of p from xj−1 to xj+1 in 	 is locally embedded, the vertical
wedge segments from xj−1 to xj and from xj to xj+1 are not inverses of each other,
and so the paths αj ∗ β̄j and αj+1 ∗ β̄j+1 are not inverses of each other in G̃. Since
G has a unique illegal turn, each point of G̃ at which an illegal turn occurs has a
unique illegal turn, from which it follows that Vj �= Vj+1.

Lemma 11. Let J ≥ 1 and let p be a locally embedded edge path of leafwise length J

in a leaf of F̃s. Using the notation above, for each j = 0, . . . , J there exists i with
1 ≤ i ≤ J such that the geodesic x0 xJ makes an illegal turn at Vi, and the path
xj Vi is legal. Moreover, Length(xj Vi) ≤ L.

Proof. We will prove the final statement about length at the very last. The proof
of the rest of the lemma is by induction on J , with J = 1 obvious. Supposing that
the lemma is true for a certain J , we wish to prove it for J + 1.

Choose xj with 0 ≤ j ≤ J +1. We may assume that j ≤ J , because if j = J +1,
then we can just reverse the direction of p, reducing to the case j = 0. We therefore
can apply the induction hypothesis to the subpath of p from x0 to xJ , obtaining
k with 1 ≤ k ≤ J such that x0 xJ has an illegal turn at Vk and such that xj Vk is
legal.

Decompose x0 xJ = µ ∗ ν at the turn Vk; no claims are made on the legality of µ
or ν. The path x0 xJ+1 is what you get by tightening µ ∗ ν ∗ αJ+1 ∗ β̄J+1, which is
done by cancelling a terminal segment of µ ∗ ν with an initial segment of αJ ∗ β̄J .

If the cancellation does not remove all of ν, then Vk is still a turn in x0 xJ+1 and
we are done, by taking Vi = Vk. So we may assume that the terminal segment of
µ ∗ ν which cancels is, at least, all of ν. Since αJ+1 is legal it does not cancel with
any of µ.

If not all of αJ+1 cancels with ν, then x0 xJ+1 takes the illegal turn VJ+1. To
show that the path xj VJ+1 is legal, this path is a concatenation of the legal path
xj Vk with the path Vk VJ+1 which is legal because it is a subpath of αJ+1, and
by construction the turn at which these two paths are concatenated is not the
illegal turn at the point Vk, and so this turn is legal. We are therefore done, taking
Vi = VJ+1.

The remaining case is when ν = ᾱJ+1, which we show leads to a contradiction.
In this case Vk = VJ+1, and so the illegal turns of x0 xJ = µ ∗ ν and αJ+1 ∗ β̄J+1 at
the common concatenation point are the same, because G̃ has at most one illegal
turn at each vertex. Also, the Nielsen paths ρJ+1, ρk are equal up to orientation,
because each is a lift of ρ or ρ̄ and they have the same illegal turn. This implies
that (J + 1) − k ≥ 2, from the final remark just before Lemma 11; this is where
we use the hypothesis that p is locally embedded. If the orientations of the Nielsen
paths ρk and ρJ+1 agree, then the points xk and xJ+1 lie on the same legal half of
this Nielsen path, and so the geodesic xkxJ+1 is legal. But this geodesic falls under
the induction hypothesis because 1 ≤ J + 1 − k ≤ J , and so xkxJ+1 must have
an illegal turn, a contradiction. If ρk, ρJ+1 are oriented in the opposite direction,
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then the path xkxJ is legal, which also contradicts the induction hypothesis, noting
that 1 ≤ J − k ≤ J . The case ν = ᾱJ+1 therefore cannot occur, completing the
induction.

Remark. Note the following consequence of what we have proved so far: any ge-
odesic in G̃ whose endpoints lie on the same leaf of F̃s has at least one illegal
turn.

It remains to prove that the legal path xj Vi has length ≤ L. Switching orienta-
tion of p if necessary, we may assume j < i. It suffices to show that the legal paths
xj Vi and xi Vi have the same length, because

Lengthxi Vi ≤
1
2

Length(ρi) =
1
2

Length(ρ) = L.

Note that xj xi is obtained by concatenating two legal paths in G̃, namely xj Vi

and the reverse of xi Vi, and then cancelling. The geodesic xjxi therefore has at
most one illegal turn, but the remark above shows it has exactly one illegal turn.
A similar argument shows that for each k ≥ 1, if g̃k(xj) g̃k(xi) = (g̃k(xj xi))#
is nontrivial, then it has exactly one illegal turn: it has at most one illegal turn
because it is the straightened image of a path with exactly one illegal turn; but it
has at least one illegal turn by the remark above. The proof breaks now into two
cases, depending on whether xi and xj are identified by some power of g̃.

Case 1. g̃k(xj) = g̃k(xi) for some k ≥ 1. In this case the legal paths g̃k
(
xj Vi

)
and g̃k

(
xi Vi

)
are equal, so they have the same length, but gk stretches the path

length of every legal path by the same factor λk, and so Lengthxj Vi = Length xi Vi.
Case 2. g̃k(xj) �= g̃k(xi) for all k ≥ 1. In this case the geodesic g̃k(xj) g̃k(xi)

has exactly one illegal turn, for all k ≥ 1. Applying Fact 9, it follows that for
any sufficiently large k the points g̃k(xj) and g̃k(xi) are endpoints of some lift of
AB, and hence the geodesic g̃k(xj) g̃k(xi) is the corresponding lift of ρ, which we
denote ρ̃. But g̃k(xj) g̃k(xi) is obtained by concatenating the legal path g̃k

(
xj Vi

)
with the reverse of the legal path g̃k

(
xi Vi

)
and then cancelling, and what is left

over after the cancellation is ρ̃, which is a concatenation of two legal paths of equal
length, one an initial segment of g̃k

(
xj Vi

)
and the other an initial segment of

g̃k
(
xi Vi

)
. This proves that the legal paths g̃k

(
xj Vi

)
and g̃k

(
xi Vi

)
have the same

length, and so Length xj Vi = Lengthxi Vi as in Case 1.

4.3. Consequences of Lemma 11. The first consequence is:

Fact 12. Each leaf of F̃s is a tree.

Proof. Lemma 11 shows that for each locally embedded edge path in a leaf of F̃s,
the geodesic in G̃ with the same endpoints has at least one illegal turn, and so the
geodesic is nondegenerate and the endpoints are distinct. This implies that the leaf
has no loops and so is a tree. �

Fact 13. Each leaf of Fs is a tree.

Proof. Let 	 be a leaf of Fs. By Fact 12, 	 is π1-injective in K. If 	 were not a
tree, then 	 would contain an embedded loop. By Fact 9 the image of this loop
under a sufficiently high power of the homotopy equivalence k is either a point or
the segment AB, violating π1-injectivity. �
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Now consider any Fr-equivariant proper geodesic metric on K̃, and any leaf 	

of F̃s, with the simplicial structure on 	 inducing a simplicial metric where each
edge has length 1. Next we essentially prove that the injection 	 → K̃ is a quasi-
isometric embedding, with quasi-isometry constants independent of 	. What we
actually need, and prove, is an interpretation of this statement that takes place
entirely in G̃:

Fact 14. For each leaf 	 of F̃s, and each x, y ∈ 	 ∩ G̃, letting x = x0, . . . , xJ = y

be the points of 	 ∩ G̃ from x to y in order, the map i 	→ xi is a quasigeodesic
embedding of {0, 1, . . . , J} into G̃, with quasigeodesic constants independent of x, y.

Proof. Let Length(·) denote length in G̃. Since J is arbitrary, it suffices to prove
that Length(x0 xJ) is bounded above and below by an affine function of J . Since
Length(xi xi+1) ≤ 2L we have Length(x0 xJ) ≤ 2L · J .

Lemma 11 gives a map f from the set {x0, . . . , xJ} to the set of illegal turns
of the geodesic x0 xJ , such that d(xj , f(xj)) ≤ L. There is an integer κ ≥ 1
such that the L neighborhood of each illegal turn Vi intersects at most κ different
edges. Lemma 11 also implies that each edge contains at most one of the points
{x0, . . . , xJ}, and so the L neighborhood of Vi contains at most κ of the points
{x0, . . . , xJ}. This shows that the map f is at most κ-to-one, and so its image has
cardinality ≥ J+1

κ . In other words, the geodesic x0 xJ has at least J+1
κ illegal turns.

Letting η > 0 be the minimum length of an edge of G, it follows that

Length(x0 xJ) ≥ (
J + 1

κ
− 1)η =

η

κ
J + η(

1
κ
− 1). �

4.4. The hull of the stable foliation. The hull of a simplicial tree is the union
of bi-infinite lines in the tree, and the hull of Fs is the union of the hulls of its
leaves, a closed foliated subset of K denoted H(Fs). The hull of F̃s is similarly
defined, and H(F̃s) is equal to the total lift of H(Fs). By Fact 14, each bi-infinite
line in a leaf of H(F̃s) intersects G̃ in a quasigeodesic embedding Z → G̃ and so has
finite Hausdorff distance from a bi-infinite line in G̃. Our goal in this section is to
identify this collection of lines with a natural extension of the lamination Λu(φ−1).

Fact 15. H(Fs) is a nonempty, closed lamination, using the compact-open topology
on maps R → K. For each leaf 	 of HFs, k(	) is also a leaf of HFs, and this
induces a bijection of the set of leaves of HFs. The leaf 	′ that maps to 	 is the
unique leaf contained in the set k−1(	).

Proof. As we saw in Fact 10, each leaf has infinitely many vertices. Also, each vertex
has finite valence — in fact, the valence of each vertex of each leaf is uniformly
bounded by the maximum cardinality of ρ−1(x) for x ∈ G. It follows that each
leaf contains an infinite ray, and so there exists a sequence of longer and longer leaf
segments αi centered on a sequence of points xi. Any limit point x of the sequence
xi lies on a bi-infinite line in some leaf. This shows simultaneously that H(Fs) is
closed and that it is nonempty.

The map k is finite-to-one on G, and it extends to K by collapsing to a point
each vertical segment contained in the collapsed subwedge W ′ of W . It follows that
each point pre-image is a connected subset of a leaf of K consisting of a union of
boundedly many edges in that leaf, and since each leaf is a tree (by Fact 13), each
point pre-image is a finite subtree. The intersection of 	 with a point pre-image is
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therefore a finite subarc. In other words, the effect of k on 	 is to collapse to a point
each of a pairwise disjoint collection of uniformly finite subarcs of 	, which implies
that k(	) is also a bi-infinite line in a leaf of Fs. Thus k induces a well-defined
self-map of the set of leaves of HFs. This map is injective, because for each leaf
	 of HFs, the set k−1(	) maps to 	 by collapsing a pairwise disjoint collection of
uniformly bounded finite subtrees, and so k−1(	) contains a unique leaf 	′ of H(Fs).
Since k(	′) is contained in 	 and equals a leaf of HFs, it follows that k(	′) = 	,
showing that the map is surjective. �

Now we set up notation for pushing leaves of H(F̃s) from K̃ into the graph G̃.
Consider a leaf 	 of H(F̃s). Picking a base point x0 ∈ 	∩ G̃ and an orientation of 	

determines an ordering of the set 	∩ G̃, giving a bi-infinite sequence that we denote
x(	) = (. . . , x−1, x0, x1, . . .). This sequence has the following properties:

(1) For each i, the geodesic xi−1 xi in G̃ is a subpath of a lift ρ̃ = α̃ ∗ ˜̄β of the
Nielsen path ρ, consisting of equal length terminal subpaths of α̃ and ˜̄β.

(2) The sequence x(	) is one-to-one.
Conversely, any sequence x = (. . . , x−1, x0, x1, . . .) satisfying (1) and (2) is equal
to x(	) for some leaf 	 of H(F̃s) and some base point and orientation of 	.

Given a leaf 	 of H(F̃s) and x(	) = (. . . , x−1, x0, x1, . . .) as above, by Fact 14
the sequence x(	) is a quasi-isometric embedding Z → G̃ with uniform constants
independent of 	. It follows that x(	) fellow travels a unique bi-infinite line in G̃

denoted 	̄. We thus obtain sublaminations of the geodesic laminations of G̃ and
of G:

Λ̃H = {	̄
∣∣ 	 is a leaf of H(F̃s)} ⊂ ΛG̃,

ΛH = the projection of Λ̃H to ΛG.

For a sequence x satisfying (1) and (2) above, the image of x under g̃ also has the
structure of a sequence satisfying (1) and (2), and g̃ induces a quasi-isometry from
x to g̃(x). It follows that g̃ induces a quasi-isometry 	̄ → 	̄′ well-defined up to
bounded distance. We may therefore set φ̃(	̄) = 	̄′, which induces a map ΛH → ΛH
downstairs, that is, ΛH is an invariant sublamination of the action of φ on the
geodesic lamination of G.

A leaf 	 of the geodesic lamination of Fr is birecurrent if its realization in any
(equivalently, some) marked graph has the property that each finite subpath occurs
infinitely often in both ends of 	. Equivalently, 	 is contained in the set of limit
points of each of its ends, where the convergence takes place in the geodesic lamina-
tion. Compactness of K implies that H(Fs) is compact and so, as a consequence of
the Hausdorff maximum principle, H(Fs) has a nonempty minimal sublamination.
Each leaf of a minimal sublamination is birecurrent. We therefore have shown:

Fact 16. ΛH contains a birecurrent leaf. �
Here is the main result of this section. Following the proof we will strengthen

it by sketching how to identify ΛH completely. Recall that Λu(φ) denotes the
expanding lamination of φ and Λu(φ−1) is the expanding lamination of φ−1. In the
next proposition we consider the realizations of each of these laminations in the
train track map g : G → G representing φ.

Proposition 17. ΛH ⊃ Λu(φ−1).
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Proof. First we show that there is a uniform bound to the length of any legal
subpath of any leaf of ΛH. To see why, fix a leaf 	̄ of ΛH, and let x(	) =
(. . . , x−1, x0, x1, . . .). For each i �= j, each point of the geodesic xi xj has dis-
tance ≤ L from some xk with i ≤ k ≤ j, and by applying Lemma 11 it follows that
xk has distance ≤ L from some illegal turn of xi xj , so the illegal turns on xi xj

are spaced no more than 4L apart. Any finite subsegment of 	̄ of length > 4L is
contained in some xi xj and so contains an illegal turn.

Recall from [BFH00] that a leaf 	 of the geodesic lamination is weakly attracted
to Λu(φ) if any finite subpath of a leaf of Λu(φ) is a subpath of gn(	) for some
large n. Since the subpath can be a legal segment of arbitrarily large length, it
follows that gn(	) contains legal paths of arbitrarily large length. But we have
shown that if 	 ∈ ΛH, then gn(	) ∈ ΛH, and so there is an upper bound to the
length of legal subpaths. It follows that no leaf of ΛH is weakly attracted to Λu(φ).
Applying Theorem 6.0.1 of [BFH00], it follows that each birecurrent leaf of ΛH is
a leaf of Λu(φ−1), so there exists at least one leaf of Λu(φ−1) that is contained in
ΛH. By minimality of Λu(φ−1) it follows that Λu(φ−1) ⊂ ΛH. �

For completeness’ sake we give a description of ΛH, but with details of the proof
only sketched lightly since we do not need this description for our present purposes.
We will assume that ḡ : Ḡ → Ḡ is a train track representative of φ−1 which is either
Nielsen unique or has no Nielsen path at all. The extended expanding lamination
of φ−1 is defined to be the union of Λu(φ−1) with finitely many other leaves, as
follows. At a periodic vertex p of ḡ, any periodic direction d determines a ray rd

under iteration of ḡ, and any two periodic directions d, d′ determine a leaf 	 = rd∪rd′

in the extended expanding lamination. Also, if ρ is the Nielsen path connecting two
points p and q, then for any periodic directions d, d′ at p, q respectively, distinct
from the directions of ρ at its endpoints, 	 = rd ∪ ρ ∪ rd′ is a leaf in the extended
expanding lamination. A study of the stabilization algorithm of [BH92] shows that
the extended expanding lamination is well-defined, independent of the choice of ḡ.

We claim that ΛH is the extended expanding lamination of φ−1. This is a
consequence of the proof of Theorem 6.0.1 of [BFH00] applied to a train track rep-
resentative g : G → G for φ. This proof is laid out in Steps 1, 2, and 3. At the end
of Step 2, one considers a geodesic 	, for example any leaf of ΛH, whose realization
in G is not weakly attracted to Λu(φ), meaning that the sequence (gi	)# does not
develop longer and longer segments that are leaf segments of Λu(φ). What one
shows in this situation is that there exists an immersed loop γ in Ḡ of uniformly
bounded length so that the sequence γi = (ḡiγ)# develops longer and longer seg-
ments that are contained in and exhaust 	, as realized in Ḡ. Applying Lemma 7,
for some I the loop γI is a legal concatenation of legal paths and Nielsen paths, and
it follows that for i ≥ I the loop γi is a legal concatenation of a uniformly bounded
number of segments, each of which is either a leaf segment of Λu(φ−1) or of one of
the finitely many leaves added to make the extended expanding lamination of φ−1.
One then sees that 	 is exhausted by such segments, implying that 	 itself is a leaf
of the extended expanding lamination.

5. Proof of Theorem 1

Recall the notation: φ ∈ Out(Fr) is parageometric, with g : G → G a Nielsen
unique train track representative of some positive power of φ, with wedge model
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k : K → K, with Fs the stable foliation of k, and with ΛH the sublamination of
ΛG obtained by pushing leaves of H(Fs) into G.

To prove that λ(φ−1) < λ(φ) we will make use of an intermediate quantity, the
asymptotic compression factor of k acting on leaves of H(Fs). On the one hand we
show that λ(φ) is a strict upper bound for this factor, by using a symbolic dynamics
argument to interpret λ(φ) geometrically, and by exploiting Fact 8 which says that
some edge of G is a free edge in K. On the other hand, we use the result from
Section 4, that ΛH is a sublamination of Λu(φ−1), to show that the asymptotic
compression factor is equal to λ(φ−1) on the nose.

In this section we distinguish two measurements of length. First, we use
LengthK(α) to denote combinatorial length of an edge path α in a leaf of Fs

or F̃s, that is, the number of vertical wedge segments in α. We also use LengthG

to denote length of a path in the graph G or G̃.
By Fact 8, there is at least one edge of G that is a free edge of the 2-complex K.

Let G1 be the subgraph of G consisting of the nonfree edges, that is, the edges of
dihedral valence > 1 in K. By Fact 8 it follows that G1 is a nonempty, proper
subgraph. Let I1 = {x ∈ G

∣∣ kn(x) ∈ G1 for all n ≥ 0}. Since g has constant
stretch factor λ(φ), since the transition matrix of g has a positive power, and since
G1 is a nonempty, proper subgraph of G, it follows that I1 is a Cantor set in G1.

Fact 18. If 	 is a leaf of ΛH, then 	 ∩ G ⊂ I1.

Proof. The hypothesis means that 	 is a bi-infinite line in a leaf of Fs. This implies
that 	 ∩ G ⊂ G1, because for each point x ∈ G that is not a vertex, the valence of
x in its Fs leaf equals the dihedral valence of the edge containing x. Since kn(	)
is also a bi-infinite line in a leaf of Fs, it follows that kn(	) ∩ G ⊂ G1. This being
true for all n, it follows that 	 ∩ G ⊂ I1. �

Our next fact gives the strict inequality that we shall need in proving that
λ(φ−1) < λ(φ).

Fact 19. There is a number λ′ < λ(φ) such that for each x ∈ I1 we have

lim sup
n→∞

1
n

log
∣∣g−n(x) ∩ I1

∣∣ ≤ log(λ′).

Proof. Recall that T G is the transition graph of G. Let T G1 be the subgraph
obtained from T G by throwing away each vertex associated to an edge of G of
dihedral valence = 1, and any directed edge of T G incident to such a vertex. Let
M1 be the transition matrix of T G1. If x is contained in the interior of the ith edge
of G, then |g−n(x) ∩ I1| is the sum of the entries in the ith column of Mn

1 . In all
cases |g−n(x) ∩ I1| is bounded above by |Mn

1 |, the sum of all coefficients in Mn
1 . It

therefore suffices to show that

lim sup
n→∞

1
n

log |Mn
1 | ≤ log(λ′) < log(λ).

Since we may regard M1 as defined on the same set E × E as M with M1(e, e′) ≤
M(e, e′) and with strict inequality for at least one pair (e, e′) ∈ E × E , and since
λ is the Perron-Frobenius eigenvalue of M , this inequality follows from Perron-
Frobenius theory. See for example Theorem 4.4.7 and Theorem 4.4.4 of [LM95]. �

Now we relate Fact 19 to the asymptotic compression factor of k acting on leaves
of HFs.
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Fact 20. For each ε > 0 there exists an integer N ≥ 1 such that for all n ≥ N , if
α is an arc in a leaf 	 of HFs, and if LengthK(α) is sufficiently long (depending
on n), then

LengthK(α)
LengthK(knα)

≤ (λ′ + ε)n.

Proof. Applying Fact 15, for each leaf 	 of HFs let k̄(	) denote the unique leaf of
HFs such that k(k̄(	)) = 	, so k̄(	) ⊂ k−1(	). We extend the set map k̄ to subsets
of leaves of HFs, by setting k̄(α) = k̄(	) ∩ k−1(α) for each α ⊂ 	.

Let 	 be a leaf of HFs and α ⊂ 	 an arc. Let knα ∩ G = {x0, x1, . . . , xI} in
order. Note that if 0 < i < I, then k̄n(xi) ⊂ α, so we can augment α, replacing
it by k̄n(x0) ∪ α ∪ k̄n(xI), and increasing the length of α by an amount depending
only on n, without changing knα. If LengthK(α) were sufficiently long to start
with, then this increase would change LengthK(α) by an arbitrarily small factor.
We may therefore assume that α = k̄n(knα).

It follows that α is equal to the disjoint union of the arcs k̄n(x0), . . . , k̄n(xI)
together with I additional open vertical wedge segments, each of which maps home-
omorphically by kn to the I open wedge segments that constitute the arc knα. We
therefore have

LengthK(α) =
I∑

i=0

LengthK(k̄n(xi)) + I,

and dividing by LengthK(knα) = I we get

LengthK(α)
LengthK(knα)

=
1
I

I∑
i=0

LengthK(k̄n(xi)) + 1.

We also have LengthK(k̄n(xi)) ≤ |g−n(xi) ∩ I1|. By combining this with Fact 19 it
follows that if n is sufficiently large, then LengthK(k̄n(xi)) ≤ (λ′ + ε

2 )n and so

LengthK(α)
LengthK(knα)

≤
(
λ′ +

ε

2

)n

+
λ′ + ε

2

I
+ 1.

By taking n sufficiently large, this last quantity is

≤ (λ′ + ε)n.

�

Now we prove Theorem 1. Choose a train track representative γ : Γ → Γ of
φ−1 and let γ̃ : Γ̃ → Γ̃ be a lift to the universal cover. Since g : G → G is a train
track representative of φ, we can choose the lifts γ̃ : Γ̃ → Γ̃ and g̃ : G̃ → G̃ to
represent inverse automorphisms of Fr. It follows that there is an Fr-equivariant
quasi-isometry h : G̃ → Γ̃ such that h is a “quasiconjugacy” between k̃ and “γ̃−1”,
meaning that d(γ̃◦h◦g̃(x), h(x)) is uniformly bounded over all x ∈ G̃. Now we apply
this to a particular leaf of Λ̃u(φ−1) as follows. Pick a leaf 	′ of Λu(φ−1) realized
in Γ. For convenience we assume 	′ is periodic under γ. By passing to a power of
φ we may assume that 	′ is fixed by γ. We may choose a lift 	̃′ ⊂ Γ̃, and we may
choose the lifts g̃ and γ̃, so that 	̃′ is fixed by γ̃. Let 	̃ denote the corresponding
leaf of HF̃s, and so 	̃ is fixed by k̃. Pushing 	̃ into G̃, and mapping over by h
to Γ̃, the result is Hausdorff equivalent to 	̃′, and composing by the closest point
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projection to 	̃′, we obtain a map still denoted h : 	̃ → 	̃′ which is a quasi-isometry
and a quasiconjugacy, that is, there are constants κ ≥ 1, η ≥ 0 such that

1
κ

d�(x, y) − η ≤ d�′(hx, hy) ≤ κ d�(x, y) + η, for all x, y ∈ 	̃

and such that

d�′

(
γ̃ ◦ h ◦ k̃(x), h(x)

)
≤ η for all x ∈ 	̃.

Here we use d� for distance in 	̃ and d�′ for distance in 	̃′. By induction we obtain
for each n a constant ηn ≥ 0 such that

d�′

(
γ̃n ◦ h ◦ k̃n(x), h(x)

)
≤ ηn, for all x ∈ 	′.

We know that γ̃ expands length on 	̃′ by the exact factor of λ(φ−1). On the other
hand, Fact 20 tells us that k̃ contracts length on 	̃ by an asymptotic factor of at
most λ′. Combining these, we now show that λ(φ−1) ≤ λ′.

By Fact 20, for each sufficiently long leaf segment [x, y] of 	̃ we have

d�(x, y) ≤ (λ′ + ε)n d�(k̃n(x), k̃n(y))

and we also have

d�(k̃n(x), k̃n(y)) ≤ κ d�′(h ◦ k̃n(x), h ◦ k̃n(y)) + κη,

d�′(h ◦ k̃n(x), h ◦ k̃n(y)) = λ(φ−1)−nd�′(γ̃n ◦ h ◦ k̃n(x), γ̃n ◦ h ◦ k̃n(y)),

d�′(γ̃n ◦ h ◦ k̃n(x), γ̃n ◦ h ◦ k̃n(y)) ≤ d�′(hx, hy) + 2ηn,

d�′(hx, hy) ≤ κ d�(x, y) + η.

Combining these we get

d�(x, y) ≤ (λ′ + ε)nλ(φ−1)−nκ2d�(x, y) + (λ′ + ε)n(η + 2ηn + κη)︸ ︷︷ ︸
Bn

,

1 ≤ (λ′ + ε)nλ(φ−1)−nκ2 +
Bn

d�(x, y)
.

By Fact 20, we can let d�(x, y) → ∞ and we get

λ(φ−1)n ≤ (λ′ + ε)nκ2,

λ(φ−1) ≤ (λ′ + ε)κ2/n.

Then we can let n → ∞ to get

λ(φ−1) ≤ λ′ + ε.

Finally, letting ε → 0 we get

λ(φ−1) ≤ λ′ < λ(φ).

This completes the proof of Theorem 1.
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École Norm. Sup. (4) 38 (2005), no. 6, 847–888. MR2216833
[HM04a] M. Handel and L. Mosher, The expansion factors of an outer automorphism and its

inverse, Trans. Amer. Math. Soc., this issue.
[HM04b] M. Handel and L. Mosher, Axes in outer space, Preprint, arXiv:math.GR/0605355,

2006.
[LL03] G. Levitt and M. Lustig, Irreducible automorphisms of Fn have North-South dynamics

on compactified outer space, J. Inst. Math. Jussieu 2 (2003), no. 1, 59–72. MR1955207
(2004a:20046)

[LM95] D. Lind and B. Marcus, An Introducion to Symbolic Dynamics and Chaos, Cambridge
University Press, 1995. MR1369092 (97a:58050)

[LP97] G. Levitt and F. Paulin, Geometric group actions on trees, Amer. J. Math. 119 (1997),
no. 1, 83–102. MR1428059 (98a:57003)

[McC85] J. McCarthy, A “Tits-alternative” for subgroups of surface mapping class groups,
Trans. AMS 291 (1985), no. 2, 582–612. MR0800253 (87f:57011)

[Vog02] K. Vogtmann, Automorphisms of free groups and outer space, Proceedings of the Con-
ference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), vol. 94,
2002, pp. 1–31. MR1950871 (2004b:20060)

Department of Mathematics and Computer Science, Lehman College - CUNY, 250

Bedford Park Boulevard W, Bronx, New York 10468

E-mail address: michael.handel@lehman.cuny.edu

Department of Mathematics and Computer Science, Rutgers University at Newark,

Newark, New Jersey 07102

E-mail address: mosher@andromeda.rutgers.edu

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1346208
http://www.ams.org/mathscinet-getitem?mr=1346208
http://www.ams.org/mathscinet-getitem?mr=1445386
http://www.ams.org/mathscinet-getitem?mr=1445386
http://www.ams.org/mathscinet-getitem?mr=1765705
http://www.ams.org/mathscinet-getitem?mr=1765705
http://www.ams.org/mathscinet-getitem?mr=2150382
http://www.ams.org/mathscinet-getitem?mr=2150382
http://www.ams.org/mathscinet-getitem?mr=1147956
http://www.ams.org/mathscinet-getitem?mr=1147956
http://www.ams.org/mathscinet-getitem?mr=1341810
http://www.ams.org/mathscinet-getitem?mr=1341810
http://www.ams.org/mathscinet-getitem?mr=0907233
http://www.ams.org/mathscinet-getitem?mr=0907233
http://www.ams.org/mathscinet-getitem?mr=0830040
http://www.ams.org/mathscinet-getitem?mr=0830040
http://www.ams.org/mathscinet-getitem?mr=0568308
http://www.ams.org/mathscinet-getitem?mr=0568308
http://www.ams.org/mathscinet-getitem?mr=1626723
http://www.ams.org/mathscinet-getitem?mr=1626723
http://www.ams.org/mathscinet-getitem?mr=2216833
http://www.ams.org/mathscinet-getitem?mr=1955207
http://www.ams.org/mathscinet-getitem?mr=1955207
http://www.ams.org/mathscinet-getitem?mr=1369092
http://www.ams.org/mathscinet-getitem?mr=1369092
http://www.ams.org/mathscinet-getitem?mr=1428059
http://www.ams.org/mathscinet-getitem?mr=1428059
http://www.ams.org/mathscinet-getitem?mr=0800253
http://www.ams.org/mathscinet-getitem?mr=0800253
http://www.ams.org/mathscinet-getitem?mr=1950871
http://www.ams.org/mathscinet-getitem?mr=1950871

	1. Introduction
	2. Preliminaries
	2.1. Outer automorphisms and outer space.
	2.2. Train tracks and laminations

	3. Geometric trees and the wedge model
	3.1. Nielsen paths
	3.2. Direct limits
	3.3. No Nielsen path, strong convergence, and the proof of (??)
	3.4. Definition of the wedge model and its stable foliation Fs
	3.5. Proof of (??): duality of Fs and T+

	4. The stable foliation of the wedge model
	4.1. The stable foliation
	4.2. The structure of stable leaves
	4.3. Consequences of Lemma ??
	4.4. The hull of the stable foliation

	5. Proof of Theorem ??
	References

