Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Extension d'une valuation


Author: Michel Vaquié
Journal: Trans. Amer. Math. Soc. 359 (2007), 3439-3481
MSC (2000): Primary 13A18; Secondary 12J10, 14E15
DOI: https://doi.org/10.1090/S0002-9947-07-04184-0
Published electronically: February 12, 2007
MathSciNet review: 2299463
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We want to determine all the extensions of a valuation $ \nu$ of a field $ K$ to a cyclic extension $ L$ of $ K$, i.e. $ L=K(x)$ is the field of rational functions of $ x$ or $ L=K(\theta )$ is the finite separable extension generated by a root $ \theta$ of an irreducible polynomial $ G(x)$. In two articles from 1936, Saunders MacLane has introduced the notions of key polynomial and of augmented valuation for a given valuation $ \mu$ of $ K[x]$, and has shown how we can recover any extension to $ L$ of a discrete rank one valuation $ \nu$ of $ K$ by a countable sequence of augmented valuations $ \bigl (\mu _i\bigr ) _{i \in I}$, with $ I \subset \mathbb{N}$. The valuation $ \mu _i$ is defined by induction from the valuation $ \mu _{i-1}$, from a key polynomial $ \phi _i$ and from the value $ \gamma _i = \mu ( \phi _i )$.

In this article we study some properties of the augmented valuations and we generalize the results of MacLane to the case of any valuation $ \nu$ of $ K$. For this we need to introduce simple admissible families of augmented valuations $ {\mathcal A} = \bigl ( \mu _{\alpha} \bigr ) _{\alpha \in A}$, where $ A$ is not necessarily a countable set, and to define a limit key polynomial and limit augmented valuation for such families. Then, any extension $ \mu$ to $ L$ of a valuation $ \nu$ on $ K$ is again a limit of a family of augmented valuations.

We also get a ``factorization'' theorem which gives a description of the values $ ( \mu _{\alpha} (f))$ for any polynomial $ f$ in $ K[x]$.


References [Enhancements On Off] (What's this?)

  • [A-M] S.S. Abhyankar, T. Moh: Newton-Puiseux expension and generalized Tschirnhausen transformation. J. reine angew. Math. 260 (1973), 47-83, 261 (1973), 29-54. MR 0337955 (49:2724)
  • [A-P-Z] V. Alexandru, N. Popescu, A. Zaharescu: All valuations on $ K(X)$. J. Math. Kyoto Univ. 30 (1990), 281-296. MR 1068792 (92c:12011)
  • [Ka] I. Kaplansky: Maximal fields with valuations. Duke Math. J. 9 (1942), 303-321. MR 0006161 (3:264d)
  • [K-G] S.K. Khanduja, U. Garg: Rank $ 2$ valuations of $ K(x)$. Mathematika 37 (1990), 97-105. MR 1067891 (91j:12016)
  • [Ku] F.-V. Kuhlmann: Valuation theoric and model theoric aspects of local uniformization, dans Resolution of Singularities, Progr. in math. 181, 2000. MR 1748629 (2001c:14001)
  • [McL:1] S. MacLane: A construction for absolute values in polynomial rings. Trans. Amer. Math. Soc. 40 (1936), 363-395. MR 1501879
  • [McL:2] S. MacLane: A construction for prime ideals as absolute values of an algebraic field. Duke Math. J. 2 (1936), 492-510. MR 1545943
  • [Po] P. Popescu-Pampu: Approximate roots, dans Valuation theory and its applications, Volume II, Fields Institute Comm. 33, 2003. MR 2018562 (2004k:14006)
  • [P-P] L. Popescu, N. Popescu: On the residual transcendental extensions of a valuation. Key polynomials and augmented valuation. Tsukuba J. Math. 15 (1991), 57-78. MR 1118582 (92h:12008)
  • [P-V] N. Popescu, C. Vraciu: On the extension of valuations on a field $ K$ to $ K(X)$ - I et II. Rend. Sem. Mat. Univ. Padova 87 (1992), 151-168, 96 (1996),1-14. MR 1183907 (93i:12013); MR 1438285 (98d:12007)
  • [Sp] M. Spivakovsky: Resolution of singularities I: local uniformization, prépublication 1996.
  • [Te] B. Teissier: Valuations, deformations and toric geometry, dans Valuation theory and its applications, Volume II, Fields Institute Comm. 33, 2003. MR 2018565 (2005m:14021)
  • [Va] M. Vaquié: Valuations, dans Resolution of Singularities, Progr. in math. 181, 2000. MR 1748635 (2001i:13005)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13A18, 12J10, 14E15

Retrieve articles in all journals with MSC (2000): 13A18, 12J10, 14E15


Additional Information

Michel Vaquié
Affiliation: Laboratoire Émile Picard, UMR 5580, Université Paul Sabatier, UFR MIG, 31062 Toulouse Cedex 9, France
Email: vaquie@math.ups-tlse.fr

DOI: https://doi.org/10.1090/S0002-9947-07-04184-0
Received by editor(s): March 29, 2004
Received by editor(s) in revised form: July 18, 2005
Published electronically: February 12, 2007
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society