Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Cohomogeneity one actions on noncompact symmetric spaces of rank one

Authors: Jürgen Berndt and Hiroshi Tamaru
Journal: Trans. Amer. Math. Soc. 359 (2007), 3425-3438
MSC (2000): Primary 53C35; Secondary 57S20
Published electronically: January 26, 2007
MathSciNet review: 2299462
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We classify, up to orbit equivalence, all cohomogeneity one actions on the hyperbolic planes over the complex, quaternionic and Cayley numbers, and on the complex hyperbolic spaces $ \mathbb{C} H^n$, $ n \geq 3$. For the quaternionic hyperbolic spaces $ \mathbb{H} H^n$, $ n \geq 3$, we reduce the classification problem to a problem in quaternionic linear algebra and obtain partial results. For real hyperbolic spaces, this classification problem was essentially solved by Élie Cartan.

References [Enhancements On Off] (What's this?)

  • 1. D. V. Alekseevsky, A. J. Di Scala, Minimal homogeneous submanifolds of symmetric spaces. In: Lie groups and symmetric spaces: in memory of F.I. Karpelevich (Ed. S.G. Gindikin), Amer. Math. Soc. Transl. (2) 210 (2003), 11-25. MR 2018350 (2004i:53061)
  • 2. J. Berndt, Homogeneous hypersurfaces in hyperbolic spaces. Math. Z. 229 (1998), 589-600. MR 1664778 (2001c:53065)
  • 3. J. Berndt, M. Brück, Cohomogeneity one actions on hyperbolic spaces. J. Reine Angew. Math. 541 (2001), 209-235. MR 1876290 (2002j:53059)
  • 4. J. Berndt, H. Tamaru, Homogeneous codimension one foliations on noncompact symmetric spaces. J. Differential Geom. 63 (2003), 1-40. MR 2015258 (2004k:53076)
  • 5. J. Berndt, H. Tamaru, Cohomogeneity one actions on noncompact symmetric spaces with a totally geodesic singular orbit. Tôhoku Math. J. 56 (2004), 163-177. MR 2053317 (2005f:53079)
  • 6. J. Berndt, F. Tricerri, L. Vanhecke, Generalized Heisenberg groups and Damek-Ricci harmonic spaces. Lecture Notes in Mathematics 1598, Springer-Verlag, Berlin, 1995. MR 1340192 (97a:53068)
  • 7. A. Borel, Le plan projectif des octaves et les sphères comme espaces homogènes. C. R. Acad. Sci. Paris 230 (1950), 1378-1380. MR 0034768 (11:640c)
  • 8. R. L. Bryant, Submanifolds and special structures on the octonions. J. Differential Geom. 17 (1982), 185-232. MR 0664494 (84h:53091)
  • 9. M. Buchner, K. Fritzsche, T. Sakai, Geometry and cohomology of certain domains in the complex projective space. J. Reine Angew. Math. 323 (1981), 1-52. MR 0611441 (82k:32030)
  • 10. E. Cartan, Familles de surfaces isoparamétriques dans les espaces à courbure constante. Ann. Mat. Pura Appl. IV. s. 17 (1938), 177-191. MR 1553310
  • 11. A. J. Di Scala, C. Olmos, The geometry of homogeneous submanifolds of hyperbolic space. Math. Z. 237 (2001), 199-209. MR 1836778 (2002d:53064)
  • 12. P. B. Eberlein, Geometry of nonpositively curved manifolds. University of Chicago Press, Chicago, London, 1996. MR 1441541 (98h:53002)
  • 13. R. Harvey, H. B. Lawson Jr., Calibrated geometries. Acta Math. 148 (1982), 47-157. MR 0666108 (85i:53058)
  • 14. W.-Y. Hsiang, H. B. Lawson Jr., Minimal submanifolds of low cohomogeneity. J. Differential Geom. 5 (1971), 1-38. MR 0298593 (45:7645)
  • 15. K. Iwata, Classification of compact transformation groups on cohomology quaternion projective spaces with codimension one orbits. Osaka J. Math. 15 (1978), 475-508. MR 0510490 (80k:57068)
  • 16. K. Iwata, Compact transformation groups on rational cohomology Cayley projective planes. Tôhoku Math. J. (2) 33 (1981), 429-442. MR 0643227 (83h:57047)
  • 17. A. Kollross, A classification of hyperpolar and cohomogeneity one actions. Trans. Amer. Math. Soc. 354 (2002), 571-612. MR 1862559 (2002g:53091)
  • 18. T. Levi-Civita, Famiglie di superficie isoparametriche nell'ordinario spazio euclideo. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (6) 26 (1937), 355-362.
  • 19. A. L. Onishchik, Inclusion relations among transitive compact transformation groups. Amer. Math. Soc. Transl. (2) 50 (1966), 5-58.
  • 20. B. Segre, Famiglie di ipersuperficie isoparametriche negli spazi euclidei ad un qualunque numero di dimensioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (6) 27 (1938), 203-207.
  • 21. R. Takagi, On homogeneous real hypersurfaces in a complex projective space. Osaka J. Math. 10 (1973), 495-506. MR 0336660 (49:1433)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53C35, 57S20

Retrieve articles in all journals with MSC (2000): 53C35, 57S20

Additional Information

Jürgen Berndt
Affiliation: Department of Mathematics, University College, Cork, Ireland

Hiroshi Tamaru
Affiliation: Department of Mathematics, Hiroshima University, 1-3-1 Kagamiyama, Higashi- Hiroshima, 739-8526, Japan

Keywords: Symmetric spaces, hyperbolic spaces, cohomogeneity one actions, homogeneous hypersurfaces
Received by editor(s): July 12, 2005
Published electronically: January 26, 2007
Additional Notes: The second author was partially supported by Grant-in-Aid for Young Scientists (B) 14740049 and 17740039, The Ministry of Education, Culture, Sports, Science and Technology, Japan
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society