Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Eigenvalue estimates for minimal surfaces in hyperbolic space


Author: Alberto Candel
Journal: Trans. Amer. Math. Soc. 359 (2007), 3567-3575
MSC (2000): Primary 53A10, 53C21
DOI: https://doi.org/10.1090/S0002-9947-07-04104-9
Published electronically: March 7, 2007
MathSciNet review: 2302506
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives an upper bound for the first eigenvalue of the universal cover of a complete, stable minimal surface in hyperbolic space, and a sharper one for least area disks.


References [Enhancements On Off] (What's this?)

  • 1. Michael T. Anderson, Complete minimal varieties in hyperbolic space, Invent. Math. 69 (1982), no. 3, 477-494.MR 0679768 (84c:53005)
  • 2. -, Complete minimal hypersurfaces in hyperbolic $ n$-manifolds, Comment. Math. Helv. 58 (1983), no. 2, 264-290.MR 0705537 (85e:53076)
  • 3. João Lucas Barbosa and Manfredo do Carmo, Stability of minimal surfaces and eigenvalues of the Laplacian, Math. Z. 173 (1980), no. 1, 13-28.MR 0584346 (81h:53007)
  • 4. Robert Brooks, A relation between growth and the spectrum of the Laplacian, Math. Z. 178 (1981), no. 4, 501-508.MR 0638814 (83a:58089)
  • 5. Manfredo do Carmo and M. Dajczer, Rotation hypersurfaces in spaces of constant curvature, Trans. Amer. Math. Soc. 277 (1983), no. 2, 685-709.MR 0694383 (85b:53055)
  • 6. Manfredo do Carmo and C. K. Peng, Stable complete minimal surfaces in $ {\bf R}\sp{3}$ are planes, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 6, 903-906.MR 0546314 (80j:53012)
  • 7. Isaac Chavel, Isoperimetric inequalities, Cambridge Tracts in Mathematics, vol. 145, Cambridge University Press, Cambridge, 2001, Differential geometric and analytic perspectives. MR 1849187 (2002h:58040)
  • 8. Shiu Yuen Cheng, Peter Li, and Shing-Tung Yau, Heat equations on minimal submanifolds and their applications, Amer. J. Math. 106 (1984), no. 5, 1033-1065. MR 0761578 (85m:58171)
  • 9. Jaigyoung Choe and Robert Gulliver, Isoperimetric inequalities on minimal submanifolds of space forms, Manuscripta Math. 77 (1992), no. 2-3, 169-189. MR 1188579 (93k:53059)
  • 10. Doris Fischer-Colbrie and Richard Schoen, The structure of complete stable minimal surfaces in $ 3$-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199-211. MR 0562550 (81i:53044)
  • 11. Robert Hermann, Focal points of closed submanifolds of Riemannian spaces, Indag. Math. 25 (1963), 613-628.MR 0158333 (28:1558)
  • 12. Shigeo Kawai, Operator $ \Delta-aK$ on surfaces, Hokkaido Math. J. 17 (1988), no. 2, 147-150. MR 0945852 (89j:58149)
  • 13. Masatoshi Kokubu, Weierstrass representation for minimal surfaces in hyperbolic space, Tohoku Math. J. (2) 49 (1997), no. 3, 367-377.MR 1464184 (98f:53008)
  • 14. Hiroshi Mori, Remarks on the paper of Barbosa and do Carmo, Arch. Math. (Basel) 37 (1981), no. 2, 173-178. MR 0640804 (83e:53061)
  • 15. Geraldo de Oliveira Filho and Marc Soret, Complete minimal surfaces in hyperbolic space, Math. Ann. 311 (1998), no. 3, 397-419. MR 1637915 (2000a:53013)
  • 16. A. V. Pogorelov, On the stability of minimal surfaces, Dokl. Akad. Nauk SSSR 260 (1981), no. 2, 293-295. MR 0630142 (83b:49043)
  • 17. Konrad Polthier, Geometric a priori estimates for hyperbolic minimal surfaces, Bonner Mathematische Schriften [Bonn Mathematical Publications], 263, Universität Bonn Mathematisches Institut, Bonn, 1994, Dissertation, Universität Bonn, Bonn, 1993. MR 1293964 (95h:53011)
  • 18. Richard Schoen, Estimates for stable minimal surfaces in three-dimensional manifolds, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 111-126.MR 0795231 (86j:53094)
  • 19. Karen K. Uhlenbeck, Closed minimal surfaces in hyperbolic $ 3$-manifolds, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 147-168.MR 0795233 (87b:53093)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53A10, 53C21

Retrieve articles in all journals with MSC (2000): 53A10, 53C21


Additional Information

Alberto Candel
Affiliation: Department of Mathematics, California State University, Northridge, Northridge, California 91330
Email: alberto.candel@csun.edu

DOI: https://doi.org/10.1090/S0002-9947-07-04104-9
Received by editor(s): February 14, 2005
Published electronically: March 7, 2007
Additional Notes: This research was supported by N.S.F. Grant 0205825
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society