Allee effect and bistability in a spatially heterogeneous predator-prey model

Authors:
Yihong Du and Junping Shi

Journal:
Trans. Amer. Math. Soc. **359** (2007), 4557-4593

MSC (2000):
Primary 35J55, 92D40; Secondary 35B30, 35B32, 35J65, 92D25

Published electronically:
April 17, 2007

MathSciNet review:
2309198

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A spatially heterogeneous reaction-diffusion system modelling predator-prey interaction is studied, where the interaction is governed by a Holling type II functional response. Existence of multiple positive steady states and global bifurcation branches are examined as well as related dynamical behavior. It is found that while the predator population is not far from a constant level, the prey population could be extinguished, persist or blow up depending on the initial population distributions, the various parameters in the system, and the heterogeneous environment. In particular, our results show that when the prey growth is strong, the spatial heterogeneity of the environment can play a dominant role for the presence of the Allee effect. Our mathematical analysis relies on bifurcation theory, topological methods, various comparison principles and elliptic estimates. We combine these methods with monotonicity arguments to the system through the use of some new auxiliary scalar equations, though the system itself does not keep an order structure as the competition system does. Among other things, this allows us to obtain partial descriptions of the dynamical behavior of the system.

**[BL]**H. Berestycki and P.-L. Lions,*Some applications of the method of super and subsolutions*, Bifurcation and nonlinear eigenvalue problems (Proc., Session, Univ. Paris XIII, Villetaneuse, 1978) Lecture Notes in Math., vol. 782, Springer, Berlin, 1980, pp. 16–41. MR**572249****[BNV]**H. Berestycki, L. Nirenberg, and S. R. S. Varadhan,*The principal eigenvalue and maximum principle for second-order elliptic operators in general domains*, Comm. Pure Appl. Math.**47**(1994), no. 1, 47–92. MR**1258192**, 10.1002/cpa.3160470105**[BB]**J. Blat and K. J. Brown,*Global bifurcation of positive solutions in some systems of elliptic equations*, SIAM J. Math. Anal.**17**(1986), no. 6, 1339–1353. MR**860917**, 10.1137/0517094**[BD]**Yi Hong Du and K. J. Brown,*Bifurcation and monotonicity in competition reaction-diffusion systems*, Nonlinear Anal.**23**(1994), no. 1, 1–13. MR**1288495**, 10.1016/0362-546X(94)90248-8**[CC1]**Robert Stephen Cantrell and Chris Cosner,*Diffusive logistic equations with indefinite weights: population models in disrupted environments*, Proc. Roy. Soc. Edinburgh Sect. A**112**(1989), no. 3-4, 293–318. MR**1014659**, 10.1017/S030821050001876X**[CC2]**Robert Stephen Cantrell and Chris Cosner,*Spatial ecology via reaction-diffusion equations*, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. MR**2191264****[CEL]**A. Casal, J. C. Eilbeck, and J. López-Gómez,*Existence and uniqueness of coexistence states for a predator-prey model with diffusion*, Differential Integral Equations**7**(1994), no. 2, 411–439. MR**1255897****[CP]**Ph. Clément and L. A. Peletier,*An anti-maximum principle for second-order elliptic operators*, J. Differential Equations**34**(1979), no. 2, 218–229. MR**550042**, 10.1016/0022-0396(79)90006-8**[Co]**E. D. Conway,*Diffusion and predator-prey interaction: pattern in closed systems*, Partial differential equations and dynamical systems, Res. Notes in Math., vol. 101, Pitman, Boston, MA, 1984, pp. 85–133. MR**759745****[CR1]**Michael G. Crandall and Paul H. Rabinowitz,*Bifurcation from simple eigenvalues*, J. Functional Analysis**8**(1971), 321–340. MR**0288640****[CR2]**Michael G. Crandall and Paul H. Rabinowitz,*Bifurcation, perturbation of simple eigenvalues and linearized stability*, Arch. Rational Mech. Anal.**52**(1973), 161–180. MR**0341212****[Da1]**E. N. Dancer,*On the indices of fixed points of mappings in cones and applications*, J. Math. Anal. Appl.**91**(1983), no. 1, 131–151. MR**688538**, 10.1016/0022-247X(83)90098-7**[Da2]**E. N. Dancer,*On positive solutions of some pairs of differential equations*, Trans. Amer. Math. Soc.**284**(1984), no. 2, 729–743. MR**743741**, 10.1090/S0002-9947-1984-0743741-4**[DD]**E. N. Dancer and Yihong Du,*Effects of certain degeneracies in the predator-prey model*, SIAM J. Math. Anal.**34**(2002), no. 2, 292–314. MR**1951776**, 10.1137/S0036141001387598**[dMR]**P. de Mottoni and F. Rothe,*Convergence to homogeneous equilibrium state for generalized Volterra-Lotka systems with diffusion*, SIAM J. Appl. Math.**37**(1979), no. 3, 648–663. MR**549146**, 10.1137/0137048**[D1]**Yihong Du,*Effects of a degeneracy in the competition model. I. Classical and generalized steady-state solutions*, J. Differential Equations**181**(2002), no. 1, 92–132. MR**1900462**, 10.1006/jdeq.2001.4074**[D2]**Yihong Du,*Effects of a degeneracy in the competition model. II. Perturbation and dynamical behaviour*, J. Differential Equations**181**(2002), no. 1, 133–164. MR**1900463**, 10.1006/jdeq.2001.4075**[D3]**Yihong Du,*Realization of prescribed patterns in the competition model*, J. Differential Equations**193**(2003), no. 1, 147–179. MR**1994062**, 10.1016/S0022-0396(03)00056-1**[D4]**Yihong Du,*Spatial patterns for population models in a heterogeneous environment*, Taiwanese J. Math.**8**(2004), no. 2, 155–182. MR**2061685****[D5]**Yihong Du,*Bifurcation and related topics in elliptic problems*, Stationary partial differential equations. Vol. II, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2005, pp. 127–209. MR**2181483**, 10.1016/S1874-5733(05)80011-7**[D6]**Yihong Du,*Asymptotic behavior and uniqueness results for boundary blow-up solutions*, Differential Integral Equations**17**(2004), no. 7-8, 819–834. MR**2074688****[DHs]**Yihong Du and Sze-Bi Hsu,*A diffusive predator-prey model in heterogeneous environment*, J. Differential Equations**203**(2004), no. 2, 331–364. MR**2073690**, 10.1016/j.jde.2004.05.010**[DHu]**Yihong Du and Qingguang Huang,*Blow-up solutions for a class of semilinear elliptic and parabolic equations*, SIAM J. Math. Anal.**31**(1999), no. 1, 1–18. MR**1720128**, 10.1137/S0036141099352844**[DLi]**Yihong Du and Shujie Li,*Positive solutions with prescribed patterns in some simple semilinear equations*, Differential Integral Equations**15**(2002), no. 7, 805–822. MR**1895567****[DL1]**Yihong Du and Yuan Lou,*Some uniqueness and exact multiplicity results for a predator-prey model*, Trans. Amer. Math. Soc.**349**(1997), no. 6, 2443–2475. MR**1401768**, 10.1090/S0002-9947-97-01842-4**[DL2]**Yihong Du and Yuan Lou,*S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model*, J. Differential Equations**144**(1998), no. 2, 390–440. MR**1616901**, 10.1006/jdeq.1997.3394**[DL3]**Yihong Du and Yuan Lou,*Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation*, Proc. Roy. Soc. Edinburgh Sect. A**131**(2001), no. 2, 321–349. MR**1830414**, 10.1017/S0308210500000895**[DM]**Yihong Du and Li Ma,*Logistic type equations on ℝ^{ℕ} by a squeezing method involving boundary blow-up solutions*, J. London Math. Soc. (2)**64**(2001), no. 1, 107–124. MR**1840774**, 10.1017/S0024610701002289**[DS1]**Yihong Du and Junping Shi,*A diffusive predator-prey model with a protection zone*, J. Differential Equations**229**(2006), no. 1, 63–91. MR**2265618**, 10.1016/j.jde.2006.01.013**[DS2]**Yihong Du and Junping Shi,*Some recent results on diffusive predator-prey models in spatially heterogeneous environment*, Nonlinear dynamics and evolution equations, Fields Inst. Commun., vol. 48, Amer. Math. Soc., Providence, RI, 2006, pp. 95–135. MR**2223350****[H]**Holling, C. S., Some characteristics of simple types of predation and parasitism.*Canadian Entomologist***91**(1959), 385-398.**[HLR]**Jianhua Huang, Gang Lu, and Shigui Ruan,*Existence of traveling wave solutions in a diffusive predator-prey model*, J. Math. Biol.**46**(2003), no. 2, 132–152. MR**1963069**, 10.1007/s00285-002-0171-9**[KS]**Philip Korman and Junping Shi,*New exact multiplicity results with an application to a population model*, Proc. Roy. Soc. Edinburgh Sect. A**131**(2001), no. 5, 1167–1182. MR**1862448**, 10.1017/S0308210500001323**[KuS]**Kurata, Kazuhiro; Shi, Junping, Optimal spatial harvesting strategy and symmetry-breaking. Submitted, (2005).**[MP]**Alexander B. Medvinsky, Sergei V. Petrovskii, Irene A. Tikhonova, Horst Malchow, and Bai-Lian Li,*Spatiotemporal complexity of plankton and fish dynamics*, SIAM Rev.**44**(2002), no. 3, 311–370 (electronic). MR**1951363**, 10.1137/S0036144502404442**[OSS]**Shobha Oruganti, Junping Shi, and Ratnasingham Shivaji,*Diffusive logistic equation with constant yield harvesting. I. Steady states*, Trans. Amer. Math. Soc.**354**(2002), no. 9, 3601–3619 (electronic). MR**1911513**, 10.1090/S0002-9947-02-03005-2**[O]**Tiancheng Ouyang,*On the positive solutions of semilinear equations Δ𝑢+𝜆𝑢-ℎ𝑢^{𝑝}=0 on the compact manifolds*, Trans. Amer. Math. Soc.**331**(1992), no. 2, 503–527. MR**1055810**, 10.1090/S0002-9947-1992-1055810-7**[OS1]**Tiancheng Ouyang and Junping Shi,*Exact multiplicity of positive solutions for a class of semilinear problems*, J. Differential Equations**146**(1998), no. 1, 121–156. MR**1625731**, 10.1006/jdeq.1998.3414**[OS2]**Tiancheng Ouyang and Junping Shi,*Exact multiplicity of positive solutions for a class of semilinear problem. II*, J. Differential Equations**158**(1999), no. 1, 94–151. MR**1721723**, 10.1016/S0022-0396(99)80020-5**[OL]**Owen, M.R.; Lewis, M.A., How can predation slow, stall or reverse a prey invasion?*Bull. Math. Biol.***63**, (2001), 655-684.**[SJ]**Segel, L.A.; Jackson, J.L., Dissipative structure: An explaination and an ecological example.*J. Theor. Biol.*,**37**, (1975), 545-559.**[SL]**Lee A. Segel and Simon A. Levin,*Application of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions*, Topics in statistical mechanics and biophysics: a memorial to Julius L. Jackson, Amer. Inst. Phys., New York, 1976, pp. 123–152. AIP Conf. Proc., No. 27. MR**0496857****[S1]**Junping Shi,*Persistence and bifurcation of degenerate solutions*, J. Funct. Anal.**169**(1999), no. 2, 494–531. MR**1730558**, 10.1006/jfan.1999.3483**[S2]**Junping Shi,*A radially symmetric anti-maximum principle and applications to fishery management models*, Electron. J. Differential Equations (2004), No. 27, 13 pp. (electronic). MR**2036211****[SS1]**Junping Shi and Ratnasingham Shivaji,*Global bifurcations of concave semipositone problems*, Evolution equations, Lecture Notes in Pure and Appl. Math., vol. 234, Dekker, New York, 2003, pp. 385–398. MR**2073759****[SS2]**Junping Shi and Ratnasingham Shivaji,*Persistence in reaction diffusion models with weak Allee effect*, J. Math. Biol.**52**(2006), no. 6, 807–829. MR**2235529**, 10.1007/s00285-006-0373-7**[SY]**Junping Shi and Miaoxin Yao,*On a singular nonlinear semilinear elliptic problem*, Proc. Roy. Soc. Edinburgh Sect. A**128**(1998), no. 6, 1389–1401. MR**1663988**, 10.1017/S0308210500027384**[Si]**Leon Simon,*Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems*, Ann. of Math. (2)**118**(1983), no. 3, 525–571. MR**727703**, 10.2307/2006981

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
35J55,
92D40,
35B30,
35B32,
35J65,
92D25

Retrieve articles in all journals with MSC (2000): 35J55, 92D40, 35B30, 35B32, 35J65, 92D25

Additional Information

**Yihong Du**

Affiliation:
School of Mathematics, Statistics and Computer Sciences, University of New England, Armidale, NSW2351, Australia – and – Department of Mathematics, Qufu Normal University, Qufu, Shandong 273165, People’s Republic of China

Email:
ydu@turing.une.edu.au

**Junping Shi**

Affiliation:
Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23187 – and – School of Mathematics, Harbin Normal University, Harbin, Heilongjiang 150025, People’s Republic of China

Email:
shij@math.wm.edu

DOI:
https://doi.org/10.1090/S0002-9947-07-04262-6

Keywords:
Reaction-diffusion system,
predator-prey model,
spatial heterogeneity.

Received by editor(s):
April 6, 2005

Received by editor(s) in revised form:
February 10, 2006

Published electronically:
April 17, 2007

Additional Notes:
The first author was partially supported by the Australia Research Council

The second author was partially supported by United States NSF grants DMS-0314736 and EF-0436318, College of William and Mary junior research leave, and a grant from Science Council of Heilongjiang Province, China.

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.