Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A criterion for the equivalence of the Birkhoff-Rott and Euler descriptions of vortex sheet evolution

Authors: Milton C. Lopes Filho, Helena J. Nussenzveig Lopes and Steven Schochet
Journal: Trans. Amer. Math. Soc. 359 (2007), 4125-4142
MSC (2000): Primary 76B03; Secondary 35Q35, 76B47
Published electronically: April 11, 2007
MathSciNet review: 2309179
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we consider the evolution of vortex sheets in the plane both as a weak solution of the two dimensional incompressible Euler equations and as a (weak) solution of the Birkhoff-Rott equations. We begin by discussing the classical Birkhoff-Rott equations with respect to arbitrary parametrizations of the sheet. We introduce a notion of weak solution to the Birkhoff-Rott system, and we prove consistency of this notion with the classical formulation of the equations. Our main purpose in this paper is to present a sharp criterion for the equivalence of the weak Euler and weak Birkhoff-Rott descriptions of vortex sheet dynamics.

References [Enhancements On Off] (What's this?)

  • 1. G. K. Batchelor.
    An introduction to fluid dynamics.
    Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1999. MR 1744638 (2000j:76001)
  • 2. D. Benedetto and M. Pulvirenti.
    From vortex layers to vortex sheets.
    SIAM J. Appl. Math., 52(4):1041-1056, 1992. MR 1174045 (93g:76027)
  • 3. G. Birkhoff.
    Helmholtz and Taylor instability.
    Proc. Sympos. Appl. Math., Vol. XIII, pages 55-76. American Mathematical Society, Providence, R.I., 1962. MR 0137423 (25:875)
  • 4. R. Caflisch and O. Orellana.
    Long time existence for a slightly perturbed vortex sheet.
    Comm. Pure Appl. Math., 39(6):807-838, 1986. MR 0859274 (87m:76018)
  • 5. R. Caflisch and O. Orellana.
    Singular solutions and ill-posedness for the evolution of vortex sheets.
    SIAM J. Math. Anal., 20(2):293-307, 1989. MR 0982661 (90d:76020)
  • 6. G. David.
    Opérateurs intégraux singuliers sur certaines courbes du plan complexe.
    Ann. Sci. École Norm. Sup. (4), 17(1):157-189, 1984. MR 0744071 (85k:42026)
  • 7. J.-M. Delort.
    Existence de nappes de tourbillon en dimension deux.
    J. Amer. Math. Soc., 4(3):553-586, 1991. MR 1102579 (92f:76019)
  • 8. R. DiPerna and A. Majda.
    Concentrations in regularizations for $ 2$-D incompressible flow.
    Comm. Pure Appl. Math., 40(3):301-345, 1987. MR 0882068 (88e:35149)
  • 9. R. DiPerna and A. Majda.
    Oscillations and concentrations in weak solutions of the incompressible fluid equations.
    Comm. Math. Phys., 108(4):667-689, 1987. MR 0877643 (88a:35187)
  • 10. R. DiPerna and A. Majda.
    Reduced Hausdorff dimension and concentration-cancellation for two-dimensional incompressible flow.
    J. Amer. Math. Soc., 1(1):59-95, 1988. MR 0924702 (89e:35126)
  • 11. J. Duchon and R. Robert.
    Global vortex sheet solutions of Euler equations in the plane.
    J. Differential Equations, 73(2):215-224, 1988. MR 0943940 (89h:35262)
  • 12. L. C. Evans.
    Weak convergence methods for nonlinear partial differential equations.
    CBMS Lecture Notes v. 74, American Math. Soc., Providence, 1990. MR 1034481 (91a:35009)
  • 13. L. C. Evans and S. Müller.
    Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity.
    J. Amer. Math. Soc., 7(1):199-219, 1994. MR 1220787 (94h:35205)
  • 14. H. Kaden.
    Aufwicklung einer unstabilen unstetigkeitsfläsche.
    Ing. Arch., 2:140-168, 1931.
  • 15. T. Kambe.
    Spiral vortex solution of Birkhoff-Rott equation.
    Phys. D, 37(1-3):463-473, 1989. MR 1024399 (90k:76031)
  • 16. R. Krasny.
    Desingularization of periodic vortex sheet roll-up.
    J. Comput. Phys., 65:292-313, 1986.
  • 17. R. Krasny.
    A study of singularity formation in a vortex sheet by the point-vortex approximation.
    J. Fluid Mech., 167:65-93, 1986. MR 0851670 (87g:76028)
  • 18. R. Krasny.
    Computation of vortex sheet roll-up in the Trefftz plane.
    J. Fluid Mech., 184:123-155, 1987.
  • 19. G. Lebeau.
    Régularité du problème de Kelvin-Helmholtz pour l'équation d'Euler 2d.
    ESAIM Control Optim. Calc. Var., 8:801-825 (electronic), 2002. MR 1932974 (2004a:76011)
  • 20. J.-G. Liu and Z. Xin.
    Convergence of vortex methods for weak solutions to the $ 2$-D Euler equations with vortex sheet data.
    Comm. Pure Appl. Math., 48(6):611-628, 1995. MR 1338471 (96c:76016)
  • 21. M. C. Lopes Filho, H. J. Nussenzveig Lopes, and M. O. Souza.
    On the equation satisfied by a steady Prandtl-Munk vortex sheet.
    Commun. Math. Sci., 1(1):68-73, 2003. MR 1979844 (2004c:76029)
  • 22. M. C. Lopes Filho, H. J. Nussenzveig Lopes, and E. Tadmor.
    Approximate solutions of the incompressible Euler equations with no concentrations.
    Ann. Inst. H. Poincaré Anal. Non Linéaire, 17(3):371-412, 2000. MR 1771138 (2001h:35152)
  • 23. M. C. Lopes Filho, H. J. Nussenzveig Lopes, and Z. Xin.
    Existence of vortex sheets with reflection symmetry in two space dimensions.
    Arch. Ration. Mech. Anal., 158(3):235-257, 2001. MR 1842346 (2002e:35197)
  • 24. A. Majda.
    The interaction of nonlinear analysis and modern applied mathematics.
    Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pages 175-191, Tokyo, 1991. Math. Soc. Japan. MR 1159212 (93g:35003a)
  • 25. A. Majda.
    Remarks on weak solutions for vortex sheets with a distinguished sign.
    Indiana Univ. Math. J., 42(3):921-939, 1993. MR 1254126 (94k:35236)
  • 26. A. Majda. and A. Bertozzi.
    Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics,
    Cambridge Univ. Press, Cambridge, 2002. MR 1867882 (2003a:76002)
  • 27. C. Marchioro and M. Pulvirenti.
    Mathematical theory of incompressible nonviscous fluids, volume 96 of Applied Mathematical Sciences.
    Springer-Verlag, New York, 1994. MR 1245492 (94k:76001)
  • 28. D. Meiron, G. Baker, and S. Orszag.
    Analytic structure of vortex sheet dynamics. I. Kelvin-Helmholtz instability.
    J. Fluid Mech., 114:283-298, 1982. MR 0647268 (83c:76017)
  • 29. D. W. Moore.
    The spontaneous appearance of a singularity in the shape of an evolving vortex sheet.
    Proc. Roy. Soc. London Ser. A, 365(1720):105-119, 1979. MR 0527594 (80b:76006)
  • 30. M. Munk.
    Isoperimetrische Aufgaben aus der Theorie des Fluges.
    Inaug.-dissertation, Göttingen, 1919.
  • 31. H. J. Nussenzveig Lopes.
    A refined estimate of the size of concentration sets for $ 2$D incompressible inviscid flow.
    Indiana Univ. Math. J., 46(1):165-182, 1997. MR 1462801 (98h:35191)
  • 32. S. Osher and R. Fedkiw.
    Level set methods and dynamic implicit surfaces, volume 153 of Applied Mathematical Sciences.
    Springer-Verlag, New York, 2003. MR 1939127 (2003j:65002)
  • 33. L. Prandtl.
    Uber die Entstehung von Wirbeln in der idealen Flussigkeit, mit Anwendung auf die Tragflugeltheorie und andere Aufgaben, in Von Kármán and Levi-Civita (eds.) Vorträge aus dem Gebiete der Hydro- und Aerodynamik,
    Springer, Berlin, 1922.
  • 34. D. I. Pullin, J. D. Buntine, and P. G. Saffman.
    On the spectrum of a stretched spiral vortex.
    Phys. Fluids, 6(9):3010-3027, 1994. MR 1290064 (95f:76047)
  • 35. N. Rott.
    Diffrraction of a weak shock with vortex generation.
    J. Fluid Mech., 1:111-128, 1956. MR 0082327 (18:534e)
  • 36. P. G. Saffman.
    Vortex dynamics.
    Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, New York, 1992. MR 1217252 (94c:76015)
  • 37. S. Schochet.
    The weak vorticity formulation of the $ 2$-D Euler equations and concentration-cancellation.
    Comm. Partial Differential Equations, 20(5-6):1077-1104, 1995. MR 1326916 (96h:35155)
  • 38. S. Schochet.
    The point-vortex method for periodic weak solutions of the 2-D Euler equations.
    Comm. Pure Appl. Math., 49(9):911-965, 1996. MR 1399201 (97e:35137)
  • 39. C. Sulem, P.-L. Sulem, C. Bardos, and U. Frisch.
    Finite time analyticity for the two- and three-dimensional Kelvin-Helmholtz instability.
    Comm. Math. Phys., 80(4):485-516, 1981. MR 0628507 (83d:76012)
  • 40. S. Wu.
    Recent progress in mathematical analysis of vortex sheets.
    In Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), pages 233-242, Beijing, 2002. Higher Ed. Press. MR 1957535 (2003m:76015)
  • 41. Y. Zheng.
    Concentration-cancellation for the velocity fields in two-dimensional incompressible fluid flows.
    Comm. Math. Phys., 135(3):581-594, 1991. MR 1091579 (92e:35131)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 76B03, 35Q35, 76B47

Retrieve articles in all journals with MSC (2000): 76B03, 35Q35, 76B47

Additional Information

Milton C. Lopes Filho
Affiliation: Departamento de Matemática, IMECC-UNICAMP, Cx. Postal 6065, Campinas SP 13081-970, Brazil

Helena J. Nussenzveig Lopes
Affiliation: Departamento de Matemática, IMECC-UNICAMP, Cx. Postal 6065, Campinas SP 13081-970, Brazil

Steven Schochet
Affiliation: School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 Israel

Keywords: Vortex sheets, incompressible flow, ideal flow, weak solutions
Received by editor(s): March 4, 2005
Published electronically: April 11, 2007
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society