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NORMAL FORM THEORY FOR RELATIVE EQUILIBRIA
AND RELATIVE PERIODIC SOLUTIONS

JEROEN S. W. LAMB AND IAN MELBOURNE

Abstract. We show that in the neighbourhood of relative equilibria and rel-
ative periodic solutions, coordinates can be chosen so that the equations of
motion, in normal form, admit certain additional equivariance conditions up
to arbitrarily high order.

In particular, normal forms for relative periodic solutions effectively reduce
to normal forms for relative equilibria, enabling the calculation of the drift of
solutions bifurcating from relative periodic solutions.

1. Introduction

Normal forms are an important tool in the local analysis, including local bifur-
cations, of dynamical systems in the neighbourhood of elementary solutions, such
as equilibria and periodic solutions. The aim of normal form theory is to find local
coordinates in terms of which a dynamical system near an elementary solution has
a convenient (simplest) form.

In systems with symmetry, or equivariant dynamical systems, elementary solu-
tions include relative equilibria and relative periodic solutions (namely, solutions
that reduce to equilibria and periodic solutions respectively when the symmetry
group is quotiented out). In this paper, we develop normal form theory in the
context of local bifurcations from relative equilibria and relative periodic solutions.

The first result in this direction was due to Fiedler and Turaev [8] who considered
bifurcations from relative equilibria. They expressed the structure of the normal
form in terms of resonances, as in [1, 12]. We explore an alternative characterisation,
in terms of additional equivariance conditions as in Elphick et al. [6], which has
certain advantages described below. In addition, our method generalises to the case
of relative periodic solutions.

1.1. Normal form theory for equilibria. To put our results in context, let us
briefly summarize the normal form theory for nonequivariant systems due to Elphick
et al. [6]. They proved that near an equilibrium of a vector field, coordinates can be
chosen such that up to any desired order the normal form vector field is equivariant
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with respect to the action of the Lie group GLT
S

where

GA = {exp(tA) : t ∈ R}.

Here, LT
S denotes the transpose of the semisimple part of L.1

More precisely, Elphick et al. [6] proved:

Theorem 1.1 (Elphick et al). Consider the ODE ẋ = f(x) where f : X → X
is a smooth vector field defined on a finite-dimensional vector space X. Suppose
that f(0) = 0 and let L = (df)0. Fix an inner product on X and define transposes
with respect to this inner product. Then for any m ≥ 1, there is a near-identity
polynomial change of coordinates that transforms f into the form

f(x) = f̃(x) + o(|x|m),

where f̃ is a polynomial of order m satisfying f̃(0) = 0, (df̃)0 = L such that the
nonlinear part of f̃ , i.e. f̃1 = f̃ − L, is GLT

S
× GLT

N
-equivariant:

f̃1(γx) = γf̃1(x), for all γ ∈ GLT
S

and all γ ∈ GLT
N
.(1.1)

Remark 1.2. (a) In practice, we choose the inner product on X so that L com-
mutes with LT

S (choose coordinates so that L is in Jordan normal form and take
the standard inner product relative to these coordinates). Then the normal form
f̃ (including the linear terms) is GLT

S
-equivariant. However, the GLT

N
-equivariance

applies only to the nonlinear terms f̃1.
(b) When focussing attention on the vector field restricted to the centre manifold,
which is natural when studying local bifurcations, GLT

S
= GLS

is a torus T d for
some d ≥ 0.
(c) The GLT

S
-equivariance of the (truncated) normal form is a feature that may

considerably aid the understanding of the local dynamics. At a more fundamen-
tal level, dynamical properties that are finitely determined, such as generic local
branching patterns of equilibria and periodic solutions [9], may be crucially influ-
enced by the normal form symmetry.
(d) In general, the normal form procedure does not converge, and terms in the
tail (beyond all polynomial orders) may affect the qualitative dynamics (see for
example [12, Chapter 7.4 and 7.5]).

A similar normal form theorem holds in the context of dynamical systems with
symmetry. Let Γ be a compact Lie group and suppose that f is a Γ-equivariant
vector field with a Γ-invariant equilibrium. Then there is a Γ-equivariant coordinate
transformation such that the normal form f̃ is Γ × GLT

S
-equivariant [11]. Again,

the normal form is characterised by the additional GLT
S
×GLT

N
-equivariance in the

nonlinear terms f̃1, valid to arbitrarily high order.
We now describe the main results of our paper on normal forms for relative

equilibria and relative periodic solutions.

1Recall that any linear operator L on a finite dimensional vector space has a unique Jordan-
Chevalley decomposition into commuting semisimple and nilpotent parts: L = LS + LN where
LSLN = LNLS . The semisimple part LS is diagonalizable (over C) and the nilpotent part LN

satisfies the condition that Lp
N = 0 for some p [13].
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1.2. Normal forms for relative equilibria. We consider bifurcations from a
relative equilibrium for a smooth dynamical system u̇ = F (u) satisfying the Γ-
equivariance condition F (γu) = γF (u) where Γ is a finite-dimensional Lie group
with Lie algebra LΓ. We denote the relative equilibrium by u0(t) = etηu0 where
η ∈ LΓ. The isotropy subgroup of the relative equilibrium is given by

∆ = {γ ∈ Γ : γu0 = u0}.

It is easy to see that δu0(t) = u0(t) for all δ ∈ ∆ and t ∈ R. We assume throughout
that ∆ is compact.

The dynamics in the neighbourhood of a relative equilibrium is governed by a
skew product on X ×Γ where X is a ∆-invariant slice transverse to the group orbit
Γu0; see [7]. The skew product equations take the form

ẋ = f(x), γ̇ = γξ(x),(1.2)

where f : X → X and ξ : X → LΓ satisfy the ∆-equivariance conditions

f(δx) = δf(x), ξ(δx) = Adδ ξ(x),(1.3)

for δ ∈ ∆ and x ∈ X. (Here, Adδ ξ = δξδ−1.)
The structure of the equations expresses the fact that the equations are Γ × ∆-

equivariant with respect to the action

(x, γ) �→ (x, γ′γ), (x, γ) �→ (δx, γδ−1),

for (γ′, δ) ∈ Γ × ∆ and (x, γ) ∈ X × Γ.
We assume that f(0) = 0 and write ξ(0) = η. The underlying relative equilibrium

u0(t) = etηu0 is thus identified with (x, γ)(t) = (0, etη).
As a bifurcation parameter λ is varied, and the relative equilibrium u0(t) may

undergo bifurcations to new branches of solutions u(t, λ). The drift dynamics along
the group orbit is then governed by an equation of the form γ̇ = γξ(x(t, λ), λ). If
Γ is abelian, we can solve this equation explicitly:

γ(t) = exp
(∫ t

0

ξ(x(s, λ), λ)ds
)
.(1.4)

However, for a general group Γ, the γ̇ equation often cannot be solved explicitly.
The simplest example is the case Γ = SO(3) studied by Wulff [21] and Comanici [5].

Fiedler and Turaev [8] approached this problem via normal form theory by sim-
plifying the form of the drift equation beyond all orders. Chan [3] applied the
normal form theory of Fiedler and Turaev to the case Γ = SO(3), greatly simpli-
fying the calculations in [5, 21]. The method in [3] generalises to general compact
groups (and certain noncompact groups) [4].

The first result of this paper is a characterisation of normal forms in the neigh-
bourhood of relative equilibria, in terms of additional equivariance conditions.

Theorem 1.3. Fix inner products on X and LΓ. For any m ≥ 1, there is a smooth
Γ-equivariant near identity change of coordinates that transforms f and ξ into the
form

f(x) = f̃(x) + o(|x|m), ξ(x) = ξ̃(x) + o(|x|m),

where f̃ = L+ f̃1 is a ∆-equivariant polynomial of order m satisfying the conditions
in Theorem 1.1 and ξ̃ = η + ξ̃1 is a polynomial of order m satisfying ξ̃1(0) = 0 and
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the ∆-equivariance condition in (1.3), and

ξ̃1 ◦ exp(tLT
S ) = (Adexp(−tη))T

S ξ̃1,(1.5)

ξ̃1 ◦ exp(tLT
N ) = (Adexp(−tη))T

U ξ̃1,(1.6)

for all t.2

Moreover, the inner product on LΓ can be chosen so that the equivariance con-
dition in (1.5) is satisfied by the normal form ξ̃ (including the constant term).

This result is proved in Section 4. In general, the equivariance condition (1.6)
for ξ̃1 does not hold for the normal form ξ̃, though it does in fact apply to ξ̃ (for
a suitably chosen inner product on LΓ) in many important special cases discussed
in this paper, including the case when Γ is compact. Even when (1.6) is not an
equivariance condition for ξ̃, it may provide useful simplifications to the normal
form.

Remark 1.4. Again (cf. Remark 1.2(d)), the normal form procedure does not con-
verge in general, and terms in the tail may affect the qualitative dynamics.

In addition, the change of coordinates required for the normal form of ξ̃ mixes up
the x and γ variables, and it is important to return to the original coordinates when
interpreting the results. (For example, the phenomenon of meandering spirals, far
from resonance, disappears beyond all orders in the normal form [8] but reappears
at low order when transferring to the original coordinates.)

For the γ̇ equation, it is often the second issue (returning to the original coordi-
nates) that is more important than the first issue (terms beyond all orders); see for
example [3]. This is in contrast to Birkhoff normal form theory for the ẋ-equation
where the second issue is usually of no significance.

An important application of Theorem 1.3 concerns the computability of the drift
in codimension-one local bifurcations from relative equilibria with trivial isotropy.
We say that Γ = K � Rn is a Euclidean-type group if Γ is the semidirect product of
Rn with a compact Lie group K. This includes compact Lie groups K as well as
the Euclidean group SE(n) = SO(n) � Rn.

Theorem 1.5. Suppose that Γ is a Euclidean-type group. Then in a codimension-
one bifurcation from a relative equilibrium with trivial isotropy (∆ = 1), the group
equation γ̇ = γξ(x) is explicitly solvable in normal form.

The proof that this result follows from Theorem 1.3 is given in Section 2. The
same conclusion holds when all elements of the isotropy subgroup ∆ of the relative
equilibrium commute with all elements of Γ, i.e. if ∆ ⊂ Z(Γ). Explicitly solvable
means that the γ̇ equation can be solved by repeated quadratures. In the compact
case, this means that the normal form of ξ(x) lies in an abelian subgroup so that
the drift is given by (1.4). This generalises a result of Chan [3] for the group SO(3).

1.3. Normal forms for relative periodic solutions. We recall that by a result
of Takens [20], the dynamics near a periodic solution can be described in normal
form by the flow of a vector field in a transverse slice, where the periodic solution
is represented by an equilibrium of the slice vector field. In the case of relative

2For invertible linear operators L, we have the decomposition L = LSLU , where LS is semisim-

ple, LU is unipotent (that is, LU − I is nilpotent), and LSLU = LU LS . This decomposition is

related to the decomposition L = LS + LN by LU = I + L−1
S LN .
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periodic solutions, we show that the local dynamics in normal form is effectively
described by a vector field near a relative equilibrium:

Theorem 1.6. The dynamics near a relative periodic solution admits a reduction
in normal form (beyond all orders) to the dynamics for a normal form vector field
near a relative equilibrium.

Remark 1.7. (a) The isotropy subgroup of the relative equilibrium in Theorem 1.6
is in general a finite cyclic extension ∆ � Z2p of the isotropy subgroup ∆ of the
relative periodic solution. Similarly, the normal form vector field is equivariant with
respect to the enlarged symmetry group Γ × (∆ � Z2p).
(b) The normal form vector field can be regarded as a general Γ × (∆ � Z2p)-
equivariant vector field possessing a relative equilibrium with isotropy ∆ � Z2p.
Hence the normal form theory for dynamics near relative periodic solutions reduces
to the normal form theory for dynamics near relative equilibria as required. In
particular, Theorem 1.3 applies in this situation.
(c) An immediate consequence of this discussion together with Theorem 1.5 is
that when Γ is of Euclidean-type, in codimension-one bifurcations from relative
periodic solutions with trivial isotropy (∆ = 1), the group equation governing drift
is explicitly solvable in normal form.

We refer to Section 6, and in particular Theorem 6.5, for a detailed discussion
of this result.

A previous approach proposed by Lamb et al. [16] reduces the dynamics near a
relative periodic solution to that of a periodic solution in the slice and subsequently
— by (Takens) normal form theory [20] — to that of an equilibrium. The method
there suffices for the analysis of the dynamics in the slice, whereas the approach
developed in the current paper deals simultaneously also with the dynamics in the
group directions. In particular, resonances and rates of growth in the drift along the
group can be efficiently computed for bifurcations from relative periodic solutions.

1.4. Normal forms in the presence of additional structure. In applications,
other structures may be present in addition to equivariance. The problem is to
characterise normal forms in terms of further equivariance conditions, whilst main-
taining the underlying structure. A positive answer can be obtained when the vector
fields with the specified structure form a Lie algebra. In these cases, the coordi-
nate transformations achieving the normal form can be taken from the correspond-
ing Lie group, and hence are structure preserving. Examples include Hamiltonian
(symplectic) and volume preserving vector fields. For details on the structure of
the equations of motion near relative equilibria and relative periodic solutions in
Hamiltonian systems, see [19, 23].

Our normal form theory also extends to the context of reversible systems, where
there is a reversing symmetry R, such that x(t) and Rx(−t) are both solutions
of the system. In this case the normalizing transformation can be chosen to be
R-equivariant, naturally preserving the R-reversibility of the system. Reversible
dynamical systems arise in a variety of applications [17]. See [18] for the struc-
ture of equations near reversible relative equilibria and reversible relative periodic
solutions.

The remainder of this paper is organised as follows. Theorem 1.3 simplifies
greatly when the group of symmetries is compact, and this simplification is stated
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in Section 2. Also, Theorem 1.5 is proved in Section 2. In Section 3, we state the
normal form theorem of Elphick et al. [6] in a general setting. In Section 4, we
prove our main result, Theorem 1.3, on normal forms near relative equilibria. In
Section 5, we discuss special (and hence simplified) cases of this theorem, beyond
the compact case. In Section 6, we extend our results to relative periodic solutions.

2. Normal forms for relative equilibria

with compact symmetry groups

Theorem 1.3 simplifies significantly when the symmetry group Γ is compact, so
in this section we state the results in this simplified setting. We describe the normal
form of the vector field after centre manifold reduction, so that the eigenvalues of
L = (df)0 lie on the imaginary axis.

2.1. The case when L is semisimple. We first describe the consequences of
Theorem 1.3 on the functions ξ̃ and f̃ defining the transformed bundle equations
in the case that L is semisimple.

Theorem 2.1. Suppose that L is semisimple with eigenvalues on the imaginary
axis, and that Γ is a compact Lie group. For any m ≥ 1, there is a smooth Γ-
equivariant near identity change of coordinates that transforms f and ξ into the
form

f(x) = f̃(x) + o(|x|m), ξ(x) = ξ̃(x) + o(|x|m),

where
ξ(0) = ξ̃(0) = η, f(0) = f̃(0) = 0, (df)0 = (df̃)0 = L

and

f̃ ◦ exp(tL) = exp(tL)f̃ , ξ̃ ◦ exp(tL) = Adexp(−tη) ξ̃,(2.1)

for all t ∈ R.

Proof. By the assumptions on L, we can choose an inner product on X so that L
is skew-symmetric. Hence LT

S = −L and LT
N = 0.

Similarly, since Γ is compact, we can choose an inner product on LΓ so that
Adexp η is orthogonal for all η ∈ LΓ. Then (Adexp η)T

S = (Adexp η)−1 = (Adexp(−η))
and (Adexp η)T

U = I for all η. The result follows immediately from Theorems 1.1
and 1.3. �

Define the groups

Gη = {exp(tη) : t ∈ R} ⊂ Γ, GL = {exp(tL) : t ∈ R} ⊂ GL(X).

Each of Gη and GL is a torus. The normal form symmetry of f in (2.1) reduces
immediately to the condition that f is GL-equivariant. In general, the normal form
symmetry for ξ is more complicated, though generically the situation simplifies
greatly. To describe the generic situation, it is useful to recall that adη : LΓ → LΓ
is the linear map given by adη ξ = ηξ − ξη. We adopt the following notion of
resonance from [8].

Definition 2.2. The element η is resonant if adη has a nonzero eigenvalue that
can be written in the form n1ν1 + · · · + nkνk where n1, . . . , nk are integers and
ν1, . . . , νk are eigenvalues of L. Otherwise η is nonresonant.
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Corollary 2.3. If Γ is compact, L is semisimple, and η is nonresonant, then the
normal form as presented in Theorem 2.1 is ∆×GL ×Gη-equivariant with respect
to the action

(x, v) �→ (δx, Adδ v), δ ∈ ∆,

(x, v) �→ (gx, v), g ∈ GL,

(x, v) �→ (x, Adh v), h ∈ Gη,

for (x, v) ∈ X × LΓ.

In other words,

f̃(δx) = δf̃(x), f̃(gx) = gf̃(x),

ξ̃(δx) = Adδ ξ̃(x), ξ̃(gx) = ξ̃(x), Adh ξ̃(x) = ξ̃(x),
(2.2)

for all δ ∈ ∆, g ∈ GL, h ∈ Gη.

Corollary 2.4. If Γ is a compact Lie group, in a codimension-one bifurcation from
a relative equilibrium with trivial isotropy (∆ = 1), the group equation γ̇ = γξ(x)
is explicitly solvable in normal form.

Proof. Generically, in the case of codimension-one bifurcations, L is semisimple.
Since ∆ = 1, there are no constraints on η, and so generically η is nonresonant: if
L = 0 (in the case of steady-state bifurcation), then η is automatically nonresonant
and if L has eigenvalues ±iω (in the case of Hopf bifurcation), then η is resonant
if and only if nω is an eigenvalue of ad η for some nonzero integer n. Hence, η
generates a maximal torus T d in Γ. The last condition in (2.2) implies that ξ(x)
commutes with η for all x and so ξ(x) ∈ LT d for all x. Hence in the γ̇ equation,
we have ξ(x(t, λ), λ) ∈ LT d for all t, λ. Since T d is abelian, we obtain the explicit
solution (1.4). �

Proof of Theorem 1.5. Write γ = (γ1, γ2) ∈ K × Rn, ξ = (ξ1, ξ2) ∈ LK × Rn.
A calculation using the semidirect product structure of Γ = K � Rn shows that
γξ = (γ1ξ1, γ1ξ2). Hence the drift equation γ̇ = γξ(t, λ) reduces to

γ̇1 = γ1ξ1(t, λ), γ̇2 = γ1ξ2(t, λ).

By Corollary 2.4, generically we can solve the γ̇1 equation explicitly for γ1(t, λ).
Then γ̇2 = g(t, λ) where g(t, λ) = γ1(t, λ)ξ2(t, λ) ∈ Rn. Since Rn is abelian we can
solve explicitly for γ2. �

To include the resonant cases, we recall that Ad : Γ → Aut(LΓ) defines a
representation of Γ on LΓ and hence restricts to a representation of Gη on LΓ.
Define the torus

H = {(exp(tL), Adexp(−tη)) : t ∈ R} ⊂ GL × Aut(LΓ).

Write elements of H as h = (h1, h2) ∈ GL × Aut(LΓ). Then the normal form of
(f, ξ) is ∆ × H-equivariant with respect to the action

(x, v) �→ (δx, Adδ v), δ ∈ ∆,

(x, v) �→ (h1x, h2v), h = (h1, h2) ∈ H.

It is easily verified that this reduces to conditions (2.2) in the nonresonant case.
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2.2. The case when L is nonsemisimple. For general L, Theorem 1.3 still
simplifies when Γ is compact. As in the proof of Theorem 2.1, we choose inner
products on X and LΓ so that LT

S = −LS and Adexp η is orthogonal for all η ∈ LΓ.
We state the result, omitting the straightforward proof.

Theorem 2.5. Suppose that Γ is a compact Lie group. For any m ≥ 1, there is a
smooth Γ-equivariant near identity change of coordinates that transforms f and ξ
into the form

f(x) = f̃(x) + o(|x|m), ξ(x) = ξ̃(x) + o(|x|m),

where
f(0) = f̃(0) = 0, (df)0 = (df̃)0 = L, ξ(0) = ξ̃(0) = η

and

f̃ ◦ exp(tLS) = exp(tLS)f̃ , ξ̃ ◦ exp(tLS) = Adexp(−tη) ξ̃,

f̃1 ◦ exp(tLT
N ) = exp(tLT

N )f̃1, ξ̃ ◦ exp(tLT
N ) = ξ̃,

for all t ∈ R, where f̃1 = f̃ − L denotes the nonlinear part of f̃ .

The definition of resonance is the same as in the semisimple case; see Defini-
tion 2.2. Nonresonance again leads to simplifications: the normal form is ∆ ×
GLS

×Gη-equivariant as in Corollary 2.3 (with L replaced by LS throughout). The
nonlinear part f̃1 of f̃ is additionally GLT

N
-equivariant, while ξ̃ is GLT

N
-invariant.

3. Extension of a result by Elphick et al.

In this section, we prove an extension of a result by Elphick et al. [6] underlying
the characterisation of normal forms in terms of equivariance conditions.

Let X and Y be finite dimensional vector spaces, and let L : X → X and
M : Y → Y be linear maps. Let Pm denote the vector space of polynomials P :
X → Y that are homogeneous of order m. We define an operator ΦL,M : Pm → Pm

given by
ΦL,M (P ) = (dP )L − MP.

More precisely, ΦL,M (P )(x) = (dP )xLx − MP (x).

Lemma 3.1. Given inner products on X and Y , there exists an inner product on
Pm with the property that for any linear maps L : X → X and M : Y → Y ,

kerΦT
L,M = {P ∈ Pm : P ◦ exp(tLT ) = exp(tMT )P for all t ∈ R}.

Proof. We break the proof into two steps. First, we choose an inner product on Pm

such that ΦT
L,M = ΦLT ,MT . Second, we show that

ker ΦL,M = {P ∈ Pm : P ◦ exp(tL) = exp(tM)P for all t ∈ R}.
The result follows.

Choose coordinates x1, . . . , xd on X such that the inner product on X is the
natural inner product (so LT is the matrix transpose in these coordinates). If α
and β are multi-indices with |α| = |β| = m, and v, w ∈ Y , we define

〈〈xαv, xβw〉〉 =
{ α!〈v, w〉Y , if α = β,

0, if α 	= β.

This extends by linearity to an inner product on Pm. A direct calculation shows
that ΦT

L,M = ΦLT ,MT , completing the first step.
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Now define R(t) = e−tMP ◦ etL. Then P ◦ exp(tL) ≡ exp(tM)P if and only if R
is constant. A direct calculation shows that

R′(t)(x) = e−tMΦL,M (P )(y), where y = etLx,

completing the second step. �

The Jordan-Chevalley decomposition of a linear operator A = AS + AN has the
property that kerA = ker AS ∩ ker AN . This enables a refinement of Lemma 3.1.

Lemma 3.2. Assume the setup of Lemma 3.1 and let L = LS+LN , M = MS+MN

be the Jordan-Chevalley decompositions of L and M .
Then P ∈ kerΦT

L,M if and only if

P ◦ exp(tLT
S ) = exp(tMT

S )P and P ◦ exp(tLT
N ) = exp(tMT

N )P for all t ∈ R.

Proof. We use the Jordan-Chevalley decomposition ΦL,M = (ΦL,M )S + (ΦL,M )N

to write
ker ΦT

L,M = ker(ΦL,M )T
S ∩ ker(ΦL,M )T

N .

Also, we have the decomposition ΦL,M = ΦLS ,MS
+ ΦLN ,MN

. We claim that (i)
ΦLS ,MS

is semisimple, (ii) ΦLN ,MN
is nilpotent, and (iii) ΦLS ,MS

commutes with
ΦLN ,MN

. It then follows by uniqueness that

(ΦL,M )S = ΦLS ,MS
, (ΦL,M )N = ΦLN ,MN

,

and so
ker ΦT

L,M = ker(ΦLS ,MS
)T ∩ ker(ΦLN ,MN

)T .

The result follows from Lemma 3.1.
It remains to verify the claim. Parts (ii) and (iii) follow by direct calculation,

with (ii) making use of the fact that dm+1P = 0. To verify part (i), let {x1, . . . , xd}
be a (complexified) basis for X in which LS is diagonal, and {v1, . . . , vm} a basis
in which MS is diagonal. A basis for Pm is given by {xαvj : |α| = m, j = 1 . . . , n}
where xα = xα1

1 · · ·xαd

d is multi-index notation with |α| = α1 + · · · + αd. It is
immediate that ΦLS ,MS

is diagonal in these coordinates as required. �

Remark 3.3. In Lemma 3.2, we can write

exp(tMT
S ) = (exp(tM))T

S , exp(tMT
N ) = (exp(tM))T

U ,

and similarly with M replaced by L.

Remark 3.4. The case X = Y and L = M is the one considered in [6].

Discrete version. Let L : X → X, M : Y → Y be as before, but suppose in addition
that M is invertible. Consider the operator ΨL,M : Pm → Pm given by

ΨL,M (P ) = P − M−1PL.

Lemma 3.5. Given inner products on X and Y , there exists an inner product on
Pm with the property that if L : X → X and M : Y → Y are linear maps with M
invertible, then P ∈ kerΨT

L,M if and only if

P ◦ LT
S = MT

S P and P ◦ LT
N = MT

NP.

Proof. This is similar to, but simpler than, the proof of Lemmas 3.1 and 3.2. �
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Equivariance and twisted equivariance. We conclude this section by generalising to
the case where L and M are equivariant or twisted equivariant. Let ∆ be a compact
Lie group ∆ acting linearly on X and Y . By averaging the inner products, we may
suppose that ∆ acts orthogonally on X and Y .

The linear map L : X → X is ∆-equivariant if Lδ = δL for all δ ∈ ∆. It is
easily verified that LS and LN are ∆-equivariant. Since ∆ acts orthogonally, LT is
∆-equivariant. Similar comments apply to M : Y → Y .

Let Pm(∆) denote the subspace of Pm consisting of ∆-equivariant polynomials
P that satisfy P (δx) = δP (x) for all δ ∈ ∆. Then ΦL,M restricts to an operator
on Pm(∆). The proofs of Lemmas 3.1, 3.2 and 3.5 go through immediately to the
∆-equivariant context.

Next suppose that φ ∈ Aut(∆) is a finite order automorphism of ∆. Then
L : X → X is ∆-twisted equivariant if Lδ = φ(δ)L for all δ ∈ ∆. Provided L
is nonsingular, it can be shown that LS and LN are twisted equivariant [14, 16].
Since ∆ acts orthogonally, LT is twisted-equivariant with respect to the inverse
automorphism LT δ = φ−1(δ)LT .

Provided L : X → X and M : Y → Y are twisted equivariant with respect to
the same automorphism φ ∈ Aut(∆), the operator ΨL,M restricts to Pm(∆). The
proof of Lemma 3.5 goes through immediately to the twisted-equivariant context.

4. Normal forms for relative equilibria

In this section, we consider the skew product equations (1.2) when Γ is a general
finite-dimensional Lie group. We continue to suppose that ∆ is compact.

The idea is to simplify the form of the skew product equations (1.2) through
arbitrarily high (but finite) order, by making changes of coordinates that preserve
the structure of the equations. Specifically, we consider changes of coordinates of
the form

(x, γ) �→ (Pf (x), γPξ(x)),
where Pf and Pξ are near identity functions of x. Such changes of coordinates
are Γ-equivariant. Moreover, provided Pf and Pξ satisfy the ∆-equivariance con-
ditions (1.3), then the ∆-equivariance of f and ξ is maintained by the change of
coordinates.

It is convenient to carry out the Pf and Pξ changes of coordinates separately. In
Subsection 4.1, we review Birkhoff normal form theory for f , using the approach
of Elphick et al. from Section 3. In Subsection 4.2, we carry out for ξ the normal
form theory of Fiedler and Turaev [8] in the same spirit.

4.1. Normal form for the slice vector field f . We recall for convenience certain
aspects of normal form theory for the equation ẋ = f(x). Write L = (df)0 and note
that L commutes with the action of ∆ on X. In the notation of Section 3, with
L = M and X = Y , we consider the linear operator

ΦL = ΦL,L(P ) = LP − (dP )L

defined on the space of Pm(∆)-equivariant homogeneous polynomials P : X → X
of order m. Given an inner product on Pm(∆), we define

Vm = (�ΦL)⊥ = ker ΦT
L.

Then by conventional Birkhoff normal form theory (see for example [12]) there is
a ∆-equivariant smooth near identity change of coordinates that transforms f into
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the normal form
L + f2 + f3 + · · · + fm + o(|x|m),

where fj ∈ Vj for j = 2, . . . , m.

Proof of Theorem 1.1. Given an inner product on X, we define an inner product
on Pm(∆) as in Section 3 so that Vm is the subspace of ∆-equivariant polynomials
that are additionally GLT

S
-equivariant and GLT

N
-equivariant. Hence the nonlinear

terms f2, f3, . . . can be transformed to have these equivariance properties through
arbitrarily high order. �

Remark 4.1. (a) As discussed in Remark 1.2, in applications to bifurcation theory,
it is natural to assume (after centre manifold reduction) that the eigenvalues of L
lie on the imaginary axis. Then we can choose the inner product on X so that
LT

S = −LS and hence GLT
S

= GLS
= T d. It follows that the normal form of f

truncated at any finite order is ∆ × T d-equivariant. When nontrivial, GLT
N

is a
noncompact connected abelian group with one topological generator, and hence is
a copy of R. If L is nonsemisimple, then the nonlinear terms of the normal form
are ∆ × T d × R-equivariant.
(b) We note that GL has a single topological generator which excludes the possibility
GLT = T d × R, so in general GLT 	= GLS

× GLT
N

. However, the GLT -equivariant
polynomials on X are the same as the GLS

× GLT
N

-equivariant polynomials on X.

4.2. Fiedler-Turaev normal form theory for ξ. We suppose that f has already
been transformed into normal form as discussed in Section 4.1. We now obtain
analogous simplifications for ξ. Recall that η = ξ(0) and L = (df)0 commute with
the given actions of ∆ on LΓ and X (so Adδ η = η and Lδ = δL). Let Pm(∆)
denote the space of homogeneous polynomials P : X → LΓ of degree m satisfying
the equivariance condition P (δx) = Adδ P (x).

Taking M = − ad η, we have the linear operator ΦL,M : Pm(∆) → Pm(∆) given
by

ΦL,M (P ) = (dP )L + adη P.

For each m ≥ 1, let Vm = (�ΦL,M )⊥ (for a given choice of inner product).

Lemma 4.2 (Fiedler and Turaev [8]). Consider the skew product equations (1.2)
and let η = ξ(0), L = (df)0. For any m ≥ 0, there exists a ∆-equivariant polynomial
P : X → LΓ of order m such that the change of coordinates γ �→ γ exp P transforms
ξ to

η + ξ1 + ξ2 + · · · + ξm + o(|x|m),

where ξj ∈ Vj for j = 1, . . . , m.

Proof. We argue inductively. Suppose that ξ has been transformed through order
m− 1. We make the transformation γ = δ exp(Pm(x)) where Pm is a homogeneous
polynomial of some fixed degree m ≥ 1, and compute the change of coordinates
modulo terms of order m + 1 or higher.

Set γ = δ expPm. Then

ξ = γ−1γ̇ = exp(−Pm)δ−1{δ̇ expPm + δ exp PmdPmẋ} = Ad−1
exp Pm

δ−1δ̇ + dPmf,

and hence

δ−1δ̇ = Adexp Pm
{ξ − dPmf} = exp(adPm

){ξ − dPmf}.
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Thus ξ is transformed into ξnew = exp(adPm
){ξ − dPmf}. In particular, if ξm

denotes the terms in ξ that are homogeneous of order m, then

ξnew
m (x) = ξm(x) + adPm(x) η − (dPm)xLx = ξm(x) − adη Pm(x) − (dPm)xLx.

Hence ξnew
m = ξm − ΦL,MPm as required. �

4.3. Characterisation of the subspaces Vm. At this point, we diverge from the
treatment in [8]. We require the following technical lemma.

Lemma 4.3. Let η ∈ LΓ. Then there exists an inner product on LΓ such that
(exp adη)T

Sη = η.

Proof. The result is straightforward if LΓ = gl(V ) where V is a finite-dimensional
vector space, since (exp adη)T

S = exp adηT
S
. In general, ηT

S is not meaningful, so the
idea is to use Ado’s Theorem (see for example [10, Appendix E.2]) to reduce to the
case LΓ = gl(V ).

The details are as follows. By Ado’s Theorem, we can embed LΓ as a subalgebra
of gl(V ). In particular, η ∈ LΓ ⊂ gl(V ). Hence ηT

S is defined as an element of
gl(V ). Choose an inner product on V so that η commutes with ηT

S .
Let ãd denote the adjoint action of gl(V ) on itself. So ãdAB = BA−AB for all

A, B ∈ gl(V ). Ado’s Theorem guarantees that adη : LΓ → LΓ is the restriction of
ãdη : gl(V ) → gl(V ).

In particular, ãdηT
S

η = 0 and so exp ãdηT
S

η = η.
Define an inner product on gl(V ) by 〈A, B〉 = trABT (using the inner prod-

uct chosen on V ). This restricts to an inner product on LΓ. Since (exp ãdη)S

is semisimple, the transpose as a linear operator on LΓ is the restriction of the
transpose as a linear operator on gl(V ). Moreover,

(exp adη)T
S η = (exp ãdη)T

S η = η,

as required. �

Proof of Theorem 1.3. This is an application of Lemma 4.2 with the inner product
on Pm(∆) chosen as in Section 3. The result for the nonconstant terms ξ̃1 follows
from Lemma 3.2 and Remark 3.3 with Y = LΓ and M = − adη. (We have used
the identity exp ◦ ad = Ad ◦ exp.) In (1.5), the constant term η is taken care of by
Lemma 4.3. �

5. Calculation of (Adexp tη)T
S and (Adexp tη)T

U

In Section 2, we described a simplified version of Theorem 1.3 for the case Γ
compact. In this section, we discuss simplifications under more general assumptions
on Γ.

We have the group homomorphism Ad : Γ → Aut(LΓ). In particular, Adexp η =
exp(adη) is an element of Aut(LΓ). Let K(η) ⊂ Aut(LΓ) denote the closure of the
one-parameter subgroup generated by adη:

K(η) = {Adexp(tη) : t ∈ R}.

We recall the following elementary results; cf. [2].
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Proposition 5.1. (a) K(η) is isomorphic to a torus T p or to a line R.
(b) K(η) is a torus if and only if Adexp η is a semisimple matrix with all eigenvalues
on the unit circle. Equivalently, adη is a semisimple matrix with all eigenvalues on
the imaginary axis.
(c) If Γ is compact, then K(η) is a torus. More generally, if {exp(tη) : t ∈ R} is a
torus in Γ, then K(η) is a torus.
(d) If Γ is abelian, then K(η) = 1. More generally, if exp η ∈ Z(Γ) (equivalently,
η ∈ Z(LΓ)), then K(η) = 1. �

When K(η) is a torus, Theorem 1.3 simplifies in a similar fashion to the case
when Γ is compact (discussed in Section 2).

Theorem 5.2. Suppose that K(η) is a torus.
For any m ≥ 1, there is a smooth Γ-equivariant near identity change of coordi-

nates that transforms ξ into the form

ξ(x) = ξ̃(x) + o(|x|m),

where ξ̃ : X → LΓ is a polynomial of order m satisfying ξ̃(0) = η and the ∆-
equivariance condition (1.3), and moreover

ξ̃ ◦ exp(tLT
S ) = Adexp(tη) ξ̃, ξ̃ ◦ exp(tLT

N ) = ξ̃,(5.1)

for all t.

Proof. Choose the inner product on X so that L commutes with LT
S . Choose the

inner product on LΓ so that K(η) acts orthogonally on LΓ. Then the equivariance
conditions in (1.5) and (1.6) reduce to (5.1). �

Remark 5.3. If all the eigenvalues of Adexp η lie on the unit circle, then (Adexp η)S

topologically generates a compact Lie group K̂(η) ⊂ Aut(Γ) (even though K(η)
need not be compact). In this case, we can again simplify condition (1.5) to the
form ξ̃ ◦exp(tLT

S ) = (Adexp(tη))S ξ̃. This is the situation for Euclidean-type groups.
However condition (1.6) requires more work as discussed below.

If K(η) = R, then the situation is more complicated. To make further progress,
we use Ado’s Theorem to view LΓ as a subalgebra of the space of real n × n
matrices Mn with Lie bracket [A, B] = AB − BA. It then makes sense to speak of
the Jordan-Chevalley decomposition η = ηS + ηN ∈ Mn for η ∈ LΓ. Also, we can
define ηT ∈ Mn for η ∈ LΓ. We caution that in general ηS , ηN and ηT depend on
the choice of embedding and need not lie in LΓ.

Definition 5.4. Given an embedding LΓ ⊂ Mn, we say that η ∈ LΓ satisfies
property (SN) if ηS and ηN lie in LΓ. We say that η satisfies property (T) if
ηT ∈ LΓ. We say that η satisfies property (SNT) if ηT

S and ηT
N lie in LΓ.

If Γ is compact, then every η ∈ LΓ satisfies (SNT). For semisimple groups, (SN)
is automatic [10, Appendix C.2] and the decomposition η = ηS +ηN is independent
of the embedding. For the classical groups, we have (SNT).

If η satisfies (SN), then (exp η)T
S = (exp ηS)T and (exp η)T

U = (exp ηN )T . The
obvious modifications of these statements hold when η satisfies (T) or (SNT) leading
to appropriately modified versions of conditions (1.5) and (1.6).
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5.1. Euclidean-type groups. Properties (SN) and (T) both fail for Euclidean-
type groups Γ = K � Rn, K ⊂ O(n), with the usual embedding in Mn+1 given
by (A, v) ↔ ( A v

0 1 ). The corresponding Lie algebra embedding is (B, w) ↔ ( B w
0 0 )

where B ⊂ LK lies in the space of n × n skew-symmetric matrices and w ∈ Rn.
Property (SN) can be recovered by normalising η = (B, w) using the adjoint

action of E(n) so that Bw = 0. It is then easily verified that η satisfies (SN) with
ηS = (B, 0) and ηN = (0, w).

In particular, ηS generates a compact subgroup of Γ and so we have the normal
form symmetry

ξ̃ ◦ exp(tLT
S ) = Ad(etB ,0) ξ̃.

A convenient choice of inner product on LΓ is 〈〈(B, w), (C, z)〉〉 = trBCT +〈w, z〉. It
is easy to check that (adη)T

N (C, z) = ( 1
2 (wzT −zwT ), 0), and iterating this operator

gives the zero operator. Hence

ξ̃ ◦ exp(tLT
N ) = A(t)ξ̃,

where A(t)(C, z) = (C + 1
2 t(wzT − zwT ), z).

Local bifurcation with E(n) symmetry, n even. Write η = (B, w). Since n is even,
generically η generates a maximal torus T d ⊂ E(n) where d = n/2. Hence, we are
in the situation of Theorem 5.2.

Generically η is nonresonant (the eigenvalues of η are not integer combinations
of the eigenvalues of L). Define GLT

S
and GLT

N
as in Section 2. Define Gη = T d.

The normal forms of f and ξ are then ∆ × GLT
S
× Gη-equivariant, and apart from

the linear term of f , they are GLT
N

-equivariant.
The Gη-equivariance leads to the conclusion that ξ lies in the constant maximal

torus T d × {0} ⊂ O(n) � Rn. In particular, the γ̇-equation is solvable in the
nonresonant situation.

Local bifurcation with E(n) symmetry, n odd. When Γ = E(n) with n odd, after
normalising η = (B, w) so that Bw = 0, it is typically the case that w is nontrivial.
We restrict to the nonresonant case and define GLT

S
, GLT

N
, GηS

and GηN
where

ηS = (B, 0) and ηN = (0, w).
Generically GηS

= T d where d = (n − 1)/2. The GηS
-equivariance already

leads to solvable drift equations, and there are no further restrictions from GηN
.

We note that when GηS
is not a maximal torus, the SO(n)-drift equations need

not be solvable but the Rn-drift equations are simplified as a consequence of the
GηN

-equivariance.

6. Normal forms for relative periodic solutions

Recall that a solution u(t) for a Γ-equivariant ordinary or partial differential
equation is called a relative periodic solution if u(t) is not a relative equilibrium
and there exists a T > 0 (least) such that u(T ) ∈ Γu(0). We may rescale time so
that T = 1. We define the group of spatial symmetries

∆ = {γ ∈ Γ : γu(0) = u(0)}.
By construction, there is an element σ ∈ Γ such that u(1) = σu(0). The element σ
is called a spatiotemporal generator.

The aim in this section is to reduce the dynamics near a relative periodic solution
to the dynamics near a relative equilibrium (modulo exponentially small effects).
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We will assume throughout that Γ is an algebraic group. Roughly speaking, the
reduction is accomplished as follows. Let X denote a ∆-invariant slice transverse
to the group orbit of trajectories Γ{u(t)}. First, we use ideas of Wulff et al. [22]
and Lamb and Melbourne [15] to show that the dynamics in a neighborhood of the
relative periodic solution is governed by a diffeomorphism F : Γ×X → Γ×X with
certain Γ × ∆-twisted equivariance properties stemming from the spatiotemporal
symmetry. The relative periodic solution corresponds to a relative fixed point for
F . Second, we obtain the decomposition (valid to arbitrarily high order)

F = A ◦ exph,

where A and exph are diffeomorphisms which preserve the relative fixed point and
commute with each other. Moreover, A has finite order and h : Γ × X → LΓ × X is
a Γ×∆-equivariant vector field with a relative equilibrium (as usual, exph denotes
the time-one map of the corresponding flow). The relative periodic solution u(t)
reduces to a relative equilibrium for h. Hence the dynamics in the vicinity of the
relative periodic solution u(t) reduces (modulo exponentially small effects) to the
study of the dynamics in the vicinity of a relative equilibrium.

The normal form vector field h can be characterised as being equivariant with
respect to a certain finite cyclic extension of Γ × ∆ (incorporating both the com-
mutativity with the diffeomorphism A and also the twisted-equivariance properties
of F ). This extra structure will be clarified as the section continues.

In Subsection 6.1 we recall a result of Wulff et al. [22] whereby the Γ-equivariant
flow near the underlying relative periodic solution is lifted to a Γ × (∆ � Z2n)-
equivariant skew-product flow on Γ × X × S1. Here, ∆ � Z2n is a finite cyclic
extension of ∆ that encodes the spatiotemporal symmetry of the relative periodic
solution. In Subsection 6.2, following Lamb and Melbourne [15], we construct the
Γ× ∆-twisted equivariant diffeomorphism F : Γ×X → Γ× X (the so-called “first
hit-pullback map”). In Subsection 6.3, we obtain the normal form decomposition
for F . (We note that it is only in this final subsection that we lose information
about exponentially small effects.)

6.1. Skew product formulation. We begin by recalling the skew-product model
from Wulff et al. [22] for dynamics in the vicinity of a relative periodic solution.

We assume throughout that Γ is an algebraic group. This assumption ensures
that we can choose the spatiotemporal symmetry σ to have the decomposition
σ = αeη, where α ∈ Γ, η ∈ LΓ satisfy αm0 = e for some finite m0, Adδ(η) = η for
all δ ∈ ∆, and Adα(η) = η. In particular, eηα = αeη.

Let φ : ∆ → ∆ be the automorphism

φ(δ) = σ−1δσ,

and let k denote the order of φ. Then k divides m0. Define 2n = lcm(m0, 2k) and
let S1 = R/(2nZ). Then we consider the skew-product equations

γ̇ = γfΓ(x, θ), ẋ = fX(x, θ), θ̇ = 1,

where fΓ : X × S1 → LΓ and fX : X × S1 → X are smooth vector fields satisfying
fΓ(0, θ) = η and fX(0, θ) = 0 for all θ ∈ S1. These equations are Γ × (∆ � Z2n)-
equivariant, where Γ acts by left multiplication on the Γ-component and the action
of ∆ � Z2n is given by

δ(γ, x, θ) = (γδ−1, δx, θ), ∀δ ∈ ∆, and S(γ, x, θ) = (γα−1, Qx, θ + 1).(6.1)
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Here, S generates Z2n, and Q ∈ GL(X) is of order (at most) 2k satisfying Q−1δQ =
φ(δ) for all δ ∈ ∆.

Equations (6.1) have the solution P (t) = (etη, 0, t) which is relative periodic
with relative period 1. Indeed P (1) = (σ, S) ·P (0). In addition, (e, δ) ·P (t) = P (t)
for all t. Hence P (t) is a relative periodic solution with spatial symmetry ∆ and
spatiotemporal generator (σ, S).

Note that ∆ � Z2n acts freely on Γ × X × S1. By equivariance, the flow on
Γ×X×S1 induces a Γ-equivariant flow on the quotient manifold Γ×X×S1/∆�Z2n.
The relative periodic solution for the quotient flow has spatial symmetry ∆ and
spatiotemporal symmetry generator σ. Moreover, every Γ-equivariant flow defined
locally near such a relative periodic solution can be realised as a quotient flow in
this way. Hence, it suffices to study equations with the skew-product structure
described in this subsection.

6.2. First-hit-pullback map for relative periodic solutions. Consider the
base point (e, 0, 0) ∈ Γ×X×S1, and the Γ×∆-invariant cross sections Γ×X×{0}
and Γ × X × {1}. Let g(1) be the first hit map of the vector field corresponding
to these cross sections (so g(1)(e, 0, 0) = (eη, 0, 1)). The symmetry (α, S) ∈ Γ ×
(∆ � Z2n) is also a mapping between these cross sections. Writing Γ × X instead
of Γ × X × {0}, we can define the first-hit-pullback map [15]

F = (α, S)−1 · g(1) : Γ × X → Γ × X.

Note that F (e, 0) = (eη, 0).

Proposition 6.1. The diffeomorphism F : Γ × X → Γ × X takes the form

F (γ, x) = (α−1γFΓ(x)α, LFX(x)),

where FΓ : X → Γ and FX : X → X are general smooth maps satisfying the
∆-equivariance conditions

FΓ(δx) = δFΓ(x)δ−1 and FX(δx) = δFX(x), ∀δ ∈ ∆,

and FΓ(0) = eη, FX(0) = 0, (dFX)0 = IdX .
The linear map L : X → X is nonsingular and ∆-twisted equivariant: Lδ =

φ(δ)L.

Proof. We can write g(1)(γ, x) = (γgΓ(x), gX(x)), where gΓ : X → Γ and gX :
X → X are smooth maps satisfying the appropriate ∆-equivariance conditions
and gΓ(0) = eη, gX(0) = 0. The result follows from the definition of F , with
L = Q−1(dgX)0. �

Proposition 6.2. The diffeomorphism F is Γ×∆-twisted equivariant, in the sense
that

F ◦ (γ′, δ) = (φ(γ′), φ(δ)) ◦ F, ∀(γ′, δ) ∈ Γ × ∆,

where φ(γ′) = α−1γ′α (and φ(δ) = α−1δα).
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Proof. Let (γ, x) ∈ Γ × X. Then

(φ(γ′), φ(δ))F (γ, x) = (φ(γ′), φ(δ))(α−1γFΓ(x)α, LFX(x))

= (φ(γ′)α−1γFΓ(x)αφ(δ)−1, φ(δ)LFX(x))

= (α−1γ′γFΓ(x)δ−1α, LδFX(x))

= (α−1γ′γδ−1FΓ(δx)α, LFX(δx))

= F (γ′γδ−1, δx) = F (γ′, δ)(γ, x),

as required. �

Define Aα,L : Γ × X → Γ × X by

Aα,L(γ, x) = (α−1γα, Lx).

Since A is a special case of F (with FΓ ≡ e and FX = IdX) it is immediate that
Aα,L is Γ × ∆-twisted equivariant. Consequently, we can write

F = Aα,LF̃ ,

where F̃ : Γ×X → Γ×X is Γ×∆-equivariant and F̃ (e, 0) = (eη, 0), (dF̃X)0 = IdX .

6.3. Takens normal form for the first-hit-pullback map. Our procedure be-
low to bring the diffeomorphism F into normal form is similar in spirit to the one
introduced by Takens [20] for periodic solutions.

Let F̃m denote the m-jet of F̃ at (e, 0). Recall that the set of m-jets of diffeo-
morphisms forms a Lie group. Moreover, F̃m(e, 0) = (eη, 0), so that F̃m is isotopic
to the identity near v = 0. Hence for all v near 0, F̃m lies in the image of the expo-
nential operator on the associated Lie algebra of vector fields; see for example [20].
In fact, there exists a unique m-jet hm : Γ × X → LΓ × X in the associated Lie
algebra of vector fields so that F̃m = exp(hm)m. At the level of m-jets, we have the
decomposition

F = Aα,L exph.(6.2)

By uniqueness, h inherits the Γ × ∆-equivariance of F̃ . That is,

h(γ, x) = (γhΓ(x), hX(x)),

where
hΓ(δx) = Adδ hΓ(x) and hX(δx) = δhX(x), ∀δ ∈ ∆.

In addition, hΓ(0) = η, hX(0) = 0, and (dhX)0 = 0.
The decomposition (6.2) is of little use unless the diffeomorphisms Aα,L and

exp h commute with each other. We record the following result for subsequent use.

Proposition 6.3. Let exp ĥ = A−1
α,L(exph)Aα,L. Then

ĥΓ = Adα hΓ ◦ L, ĥX = L−1hX ◦ L.

Proof.

A−1
α,L(exph)Aα,L(γ, x) = A−1

α,L exph(α−1γα, Lx)

= A−1
α,L(α−1γα exphΓ(Lx), exphX(Lx)) = (γα exphΓ(Lx)α−1, L−1 exphX(Lx))

= (γ Adα exp hΓ ◦ L(x), expL−1hX ◦ L(x)).

�
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Let PΓ,m(∆) denote the space of homogeneous polynomials P : X → LΓ of
degree m satisfying the equivariance condition P (δx) = Adδ P (x). Taking M =
Ad−1

α , we have the linear operator ΨL,M : PΓ,m(∆) → PΓ,m(∆) given by

ΨL,M (P ) = P − M−1PL.

Similarly, let PX,m(∆) denote the space of homogeneous polynomials P : X → X
of degree m satisfying the equivariance condition P (δx) = δP (x). We have the
linear operator ΨL,L : PX,m(∆) → PX,m(∆) given by

ΨL,L(P ) = P − L−1PL.

Let VΓ,m = (�ΦL,M )⊥ and VX,m = (�ΦL,L)⊥ (for given choices of the inner prod-
uct).

Lemma 6.4. Consider the first-hit pullback map F = Aα,L exph : Γ×X → Γ×X.
For any m ≥ 0, there exists a Γ×∆-equivariant polynomial map P : Γ×X → LΓ×X
of order m such that the change of coordinates F → exp(−P )F expP transforms h
so that

hΓ = η + hΓ,1 + · · · + hΓ,m + o(|x|m), hX = hX,2 + · · · + hX,m + o(|x|m),

where hΓ,j ∈ VΓ,j and hX,j ∈ VX,j.

Proof. We argue inductively. Suppose that PΓ and PX are homogeneous polynomi-
als of degree m in v. Define exp P̂ = A−1

α,L exp PAα,L. Then on the level of m-jets
we have the equality

exp(−P )F expP = exp(−P )Aα,L exph expP = Aα,L exp(−P ) exph expP

= Aα,L exp(h + P − P̂ ).

It follows from Proposition 6.3 that

P̂Γ = Adα PΓ ◦ L, P̂X(x) = L−1PX ◦ L.

The result follows. �

Note that Adα is semisimple since α has finite order. We choose the inner
products on LΓ and X so that AdT

α = Ad−1
α , LT

S = L−1
S . In particular AdT

α η =
η. Choosing complements to VΓ,j and VX,j as in Lemma 3.5, it follows that to
arbitrarily high order

hΓ ◦ L−1
S = Adα hΓ, hX ◦ L−1

S = L−1
S hX .

We can write L = LSeN = eNLS where N is nilpotent. Applying Proposition 6.3,
we deduce that exph commutes with Aα,LS

. Writing exph = Ae,exp N exp h̃, we
obtain the commuting decomposition F = Aα,LS

exp h̃.
By [16, Theorem 4.1], we can write LS = L0e

B = eBL0 where L0 is twisted
equivariant of finite order, B is equivariant, and B has no eigenvalues in πiQ−{0}.
As in [16], the eigenvalue restriction on B guarantees that commutativity with
Aα,LS

is equivalent to Aα,L0 . Hence writing exp h̃ = Ae,exp B exp ĥ, we obtain the
commuting decomposition F = Aα,L0 exp ĥ.

As in [16], we let � denote the order of L2k
0 . Define 2p = lcm(m0, 2k�).
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Theorem 6.5. For any m ≥ 1, there is a smooth Γ × ∆-equivariant near identity
change of coordinates T , so that the first-hit return map F satisfies up to order m
in |x|,

TFT−1 = Aα,L0 exph = exp h Aα,L0 ,

where exph is the time-one map of a Γ × (∆ � Z2p)-equivariant vector field h
describing the neighbourhood of a relative equilibrium of a Γ×Z2p-equivariant vector
field with isotropy ∆ � Z2p. Here, Z2p is generated by α(γ, x) = (γα−1, L−1

0 x).
The normal form vector field h = (γhΓ, hX) satisfies hΓ(0) = η and (dhX)0 = B,

and may be taken to be in the normal form for relative equilibria as described in
Section 4.

Proof. Apart from being Γ × ∆-equivariant, h is also equivariant with respect to
the action of Z2p: since exphAα,L0 = Aα,L0 exph, where h = (γhΓ, hX), we have
hΓ(L0x) = Adα−1 hΓ(x), so that the relative equilibrium has isotropy ∆ � Z2p ⊂
Γ × (∆ � Z2p). �

Remark 6.6. The factor of 2 in the integer 2p can be omitted when Lk is ∆-
equivariantly isotopic to the identity, which is the case when Lk has no eigenvalues
at −1; see [16, Remark 2.4(b)].
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