Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Cancellation and stable rank for direct limits of recursive subhomogeneous algebras


Author: N. Christopher Phillips
Journal: Trans. Amer. Math. Soc. 359 (2007), 4625-4652
MSC (2000): Primary 19K14, 46L80, 46M40; Secondary 19A13, 19B14, 54H20
DOI: https://doi.org/10.1090/S0002-9947-07-03849-4
Published electronically: May 11, 2007
MathSciNet review: 2320644
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the following results for a unital simple direct limit $ A$ of recursive subhomogeneous algebras with no dimension growth:

(1) $ \operatorname{tsr}(A) = 1.$

(2) The projections in $ M_{\infty}(A)$ satisfy cancellation: if $ e \oplus q \sim f \oplus q,$ then $ e \sim f.$

(3) $ A$ satisfies Blackadar's Second Fundamental Comparability Question: if $ p, \, q \in M_{\infty}(A)$ are projections such that $ \tau (p) < \tau (q)$ for all normalized traces $ \tau$ on $ A,$ then $ p \precsim q.$

(4) $ K_0 (A)$ is unperforated for the strict order: if $ \eta \in K_0 (A)$ and there is $ n > 0$ such that $ n \eta > 0,$ then $ \eta > 0.$

The last three of these results hold under certain weaker dimension growth conditions and without assuming simplicity. We use these results to obtain previously unknown information on the ordered K-theory of the crossed product $ C^* (\mathbf{Z}, X, h)$ obtained from a minimal homeomorphism of a finite-dimensional infinite compact metric space $ X.$ Specifically, $ K_0 (C^* (\mathbf{Z}, X, h))$ is unperforated for the strict order, and satisfies the following K-theoretic version of Blackadar's Second Fundamental Comparability Question: if $ \eta \in K_0 (A)$ satisfies $ \tau_* (\eta) > 0$ for all normalized traces $ \tau$ on $ A,$ then there is a projection $ p \in M_{\infty} (A)$ such that $ \eta = [p].$


References [Enhancements On Off] (What's this?)

  • 1. R. Bhatia, Perturbation Bounds for Matrix Eigenvalues, Pitman Research Notes in Math. no. 162, Longman Scientific and Technical, Harlow, Britain, 1987. MR 0925418 (88k:15020)
  • 2. B. Blackadar, Traces on simple AF C*-algebras, J. Funct. Anal. 38(1980), 156-168. MR 0587906 (82a:46062)
  • 3. B. Blackadar, K-Theory for Operator Algebras, MSRI Publication Series 5, Springer-Verlag, New York, Heidelberg, Berlin, Tokyo, 1986. MR 0859867 (88g:46082)
  • 4. B. Blackadar, Comparison theory for simple C*-algebras, pages 21-54 in: Operator Algebras and Applications, D. E. Evans and M. Takesaki (eds.) (London Math. Soc. Lecture Notes Series no. 135), Cambridge University Press, Cambridge, New York, 1988. MR 0996438 (90g:46078)
  • 5. B. Blackadar, Matricial and ultramatricial topology, pages 11-38 in: Operator Algebras, Mathematical Physics and Low Dimensional Topology (Istanbul, 1991), R. Herman and B. Tanbay (eds.), A. K. Peters, Wellesley, MA, 1993. MR 1259056 (95i:46102)
  • 6. B. Blackadar, M. Dadarlat, and M. Rørdam, The real rank of inductive limit C*-algebras, Math. Scand. 69(1991), 211-216. MR 1156427 (93e:46067)
  • 7. L. G. Brown, Stable isomorphism of hereditary subalgebras of C*-algebras, Pacific J. Math. 71(1977), 335-348. MR 0454645 (56:12894)
  • 8. A. Connes, An analogue of the Thom isomorphism for crossed products of a C*-algebra by an action of $ {\mathbb{R}}$, Advances in Math. 39(1981), 31-55. MR 0605351 (82j:46084)
  • 9. M. Dadarlat, G. Nagy, A. Némethi, and C. Pasnicu, Reduction of topological stable rank in inductive limits of C*-algebras, Pacific J. Math. 153(1992), 267-276. MR 1151561 (93d:46119)
  • 10. G. A. Elliott, Dimension groups with torsion, International J. Math. 1(1990), 361-380. MR 1080104 (92e:46116)
  • 11. G. A. Elliott, An invariant for simple C*-algebras, pages 61-90 in: Canadian Mathematical Society 1945-1995, Vol. 3: Invited Papers (P. A. Fillmore, ed.), Canadian Mathematical Society, Ottawa, 1995. MR 1661611 (2000b:46095)
  • 12. G. A. Elliott, The classification problem for amenable C*-algebras, pages 922-932 in: Proceedings of the International Congress of Mathematicians, Zürich, 1994, S. D. Chatterji, ed., Birkhäuser, Basel, 1995. MR 1403992 (97g:46072)
  • 13. G. A. Elliott, G. Gong, and L. Li, On the classification of simple inductive limit C*-algebras, II: The isomorphism theorem, preprint.
  • 14. R. Exel, Rotation numbers for automorphisms of C*-algebras, Pacific J. Math. 127(1987), 31-89. MR 0876017 (88a:46068)
  • 15. A. Fathi and M. R. Herman, Existence de difféomorphismes minimaux, Astérisque 49(1977), 37-59. MR 0482843 (58:2889)
  • 16. H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math. 83(1961), 573-601. MR 0133429 (24:A3263)
  • 17. T. Giordano, I. F. Putnam, and C. F. Skau, Topological orbit equivalence and C*-crossed products, J. Reine Angew. Math. 469(1995), 51-111. MR 1363826 (97g:46085)
  • 18. K. R. Goodearl, Partially Ordered Abelian Groups with Interpolation, Math. Surveys and Monographs, no. 20, Amer. Math. Soc., Providence, RI, 1986.MR 0845783 (88f:06013)
  • 19. K. Goodearl, Riesz decomposition in inductive limit C*-algebras, Rocky Mtn. J. Math 24(1994), 1405-1430. MR 1322235 (96c:46053)
  • 20. R. Ji, On the Crossed Product C*-Algebras Associated with Furstenberg Transformations on Tori, Ph.D. Thesis, State University of New York at Stony Brook, 1986.
  • 21. X. Jiang and H. Su, On a simple unital projectionless C*-algebra, Amer. J. Math. 121(1999), 359-413. MR 1680321 (2000a:46104)
  • 22. K. Kodaka, The positive cones of $ K_0$-groups of crossed products associated with Furstenberg transformations on the $ 2$-torus, Proc. Edinburgh Math. Soc. 43(2000), 167-175. MR 1744708 (2001b:46111)
  • 23. H. Lin, A classification theorem for nuclear simple C*-algebras of stable rank one, I, preprint.
  • 24. H. Lin and N. C. Phillips, Crossed products by minimal homeomorphisms, preprint.
  • 25. Q. Lin, Analytic structure of the transformation group C*-algebra associated with minimal dynamical systems, preprint.
  • 26. Q. Lin and N. C. Phillips, Ordered K-theory for C*-algebras of minimal homeomorphisms, pages 289-314 in: Operator Algebras and Operator Theory, L. Ge, etc. (eds.), Contemporary Mathematics, vol. 228, 1998.MR 1667666 (2000a:46118)
  • 27. Q. Lin and N. C. Phillips, Direct limit decomposition for C*-algebras of minimal diffeomorphisms, pages 107-133 in: Operator Algebras and Applications, Advanced Studies in Pure Mathematics, vol. 38, Mathematical Society of Japan, 2004.MR 2059804 (2005d:46144)
  • 28. Q. Lin and N. C. Phillips, The structure of C*-algebras of minimal diffeomorphisms, in preparation.
  • 29. M. Martin and C. Pasnicu, Some comparability results in inductive limit C*-algebras, J. Operator Theory 30(1993), 137-147. MR 1302612 (96a:46109)
  • 30. A. R. Pears, Dimension Theory of General Spaces, Cambridge University Press, Cambridge, London, New York, Melbourne, 1975.MR 0394604 (52:15405)
  • 31. G. K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, London, New York, San Francisco, 1979.MR 0548006 (81e:46037)
  • 32. G. K. Pedersen, Pullback and pushout constructions in C*-algebra theory, J. Funct. Anal. 167(1999), 243-344. MR 1716199 (2000j:46105)
  • 33. N. C. Phillips, Equivariant K-Theory for Proper Actions, Pitman Research Notes in Math., no. 178, Longman Scientific and Technical, Harlow, Britain, 1989. MR 0991566 (90g:46105)
  • 34. N. C. Phillips, Recursive subhomogeneous algebras, Trans. Amer. Math. Soc., this issue.
  • 35. N. C. Phillips, Real rank and property (SP) for direct limits of recursive subhomogeneous algebras, Trans. Amer. Math. Soc., to appear.
  • 36. M. Pimsner and D. Voiculescu, Exact sequences for K-groups and Ext-groups of certain cross-products of C*-algebras, J. Operator Theory 4(1980), 93-118. MR 0587369 (82c:46074)
  • 37. I. Putnam, On the K-theory of C*-algebras of principal groupoids, Rocky Mountain J. Math. 28(1998), 1483-1518. MR 1681679 (2001b:46113)
  • 38. M. A. Rieffel, C*-algebras associated with irrational rotations, Pacific J. Math. 93(1981), 415-429. MR 0623572 (83b:46087)
  • 39. M. A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. Ser. 3 46(1983), 301-333. MR 0693043 (84g:46085)
  • 40. C. Schochet, Topological methods for C*-algebras II: geometric resolutions and the Künneth formula, Pacific J. Math. 98(1982), 443-458. MR 0650021 (84g:46105b)
  • 41. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, San Francisco, St. Louis, Toronto, London, Sydney, 1966.MR 0210112 (35:1007)
  • 42. K. Thomsen, From trace states to states on the $ K_0$-group of a simple C*-algebra, Bull. London Math. Soc. 28(1996), 66-72. MR 1356828 (97g:46078)
  • 43. K. Thomsen, On the ordered $ K_0$-group of a simple C*-algebra, K-Theory 14(1998), 79-99. MR 1621692 (2000k:46083)
  • 44. J. Villadsen, On the stable rank of simple C*-algebras, J. Amer. Math. Soc. 12(1999), 1091-1102. MR 1691013 (2000f:46075)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 19K14, 46L80, 46M40, 19A13, 19B14, 54H20

Retrieve articles in all journals with MSC (2000): 19K14, 46L80, 46M40, 19A13, 19B14, 54H20


Additional Information

N. Christopher Phillips
Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222

DOI: https://doi.org/10.1090/S0002-9947-07-03849-4
Received by editor(s): January 22, 2001
Received by editor(s) in revised form: August 2, 2004
Published electronically: May 11, 2007
Additional Notes: This research was partially supported by NSF grants DMS 9400904 and DMS 9706850
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society