Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Recursive subhomogeneous algebras


Author: N. Christopher Phillips
Journal: Trans. Amer. Math. Soc. 359 (2007), 4595-4623
MSC (2000): Primary 46L05; Secondary 19A13, 19B14, 19K14, 46L80
DOI: https://doi.org/10.1090/S0002-9947-07-03850-0
Published electronically: May 11, 2007
MathSciNet review: 2320643
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce and characterize a particularly tractable class of unital type 1 C*-algebras with bounded dimension of irreducible representations. Algebras in this class are called recursive subhomogeneous algebras, and they have an inductive description (through iterated pullbacks) which allows one to carry over from algebras of the form $ C (X, M_n)$ many of the constructions relevant in the study of the stable rank and K-theory of simple direct limits of homogeneous C*-algebras. Our characterization implies, in particular, that if $ A$ is a separable C*-algebra whose irreducible representations all have dimension at most $ N < \infty,$ and if for each $ n$ the space of $ n$-dimensional irreducible representations has finite covering dimension, then $ A$ is a recursive subhomogeneous algebra. We demonstrate the good properties of this class by proving subprojection and cancellation theorems in it.

Consequences for simple direct limits of recursive subhomogeneous algebras, with applications to the transformation group C*-algebras of minimal homeomorphisms, will be given in separate papers.


References [Enhancements On Off] (What's this?)

  • 1. C. A. Akemann, G. K. Pedersen, and J. Tomiyama, Multipliers of C*-algebras, J. Funct. Anal. 13(1973), 277-301. MR 0470685 (57:10431)
  • 2. B. Blackadar, K-Theory for Operator Algebras, MSRI Publication Series 5, Springer-Verlag, New York, Heidelberg, Berlin, Tokyo, 1986. MR 0859867 (88g:46082)
  • 3. B. Blackadar, Matricial and ultramatricial topology, pages 11-38 in: Operator Algebras, Mathematical Physics and Low Dimensional Topology (Istanbul, 1991), R. Herman and B. Tanbay (eds.), A. K. Peters, Wellesley, MA, 1993. MR 1259056 (95i:46102)
  • 4. B. Blackadar, Operator Algebras, Encyclopaedia of Mathematical Sciences vol. 122, Springer-Verlag, Berlin, 2006. MR 2188261 (2006k:46082)
  • 5. B. Blackadar, M. Dadarlat, and M. Rørdam, The real rank of inductive limit C*-algebras, Math. Scand. 69(1991), 211-216. MR 1156427 (93e:46067)
  • 6. O. Bratteli, G. A. Elliott, D. E. Evans, and A. Kishimoto, Finite group actions on AF algebras obtained by folding the interval, K-Theory 8(1994), 443-464. MR 1310287 (96f:46125)
  • 7. M. Dadarlat and G. Gong, A classification result for approximately homogeneous C*-algebras of real rank zero, Geom. Funct. Anal. 7(1997), 646-711. MR 1465599 (98j:46062)
  • 8. M. Dadarlat, G. Nagy, A. Némethi, and C. Pasnicu, Reduction of topological stable rank in inductive limits of C*-algebras, Pacific J. Math. 153(1992), 267-276. MR 1151561 (93d:46119)
  • 9. J. Dixmier, C*-Algebras, North-Holland, Amsterdam, New York, Oxford, 1977. MR 0458185 (56:16388)
  • 10. P. Donovan and M. Karoubi, Graded Brauer groups and K-theory with local coefficients, Publ. Math. IHES 30(1970), 5-25. MR 0282363 (43:8075)
  • 11. S. Eilenberg and N. E. Steenrod, Foundations of Algebraic Topology, Princeton University Press, Princeton, 1952. MR 0050886 (14:398b)
  • 12. G. A. Elliott, On the classification of C*-algebras of real rank zero, J. Reine Angew. Math. 443(1993), 179-219. MR 1241132 (94i:46074)
  • 13. R. Engelking, Dimension Theory, North-Holland, Oxford, Amsterdam, New York, 1978. MR 0482697 (58:2753b)
  • 14. J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106(1961), 233-280. MR 0164248 (29:1547)
  • 15. K. Goodearl, Riesz decomposition in inductive limit C*-algebras, Rocky Mtn. J. Math. 24(1994), 1405-1430. MR 1322235 (96c:46053)
  • 16. D. Husemoller, Fibre Bundles (3rd ed.), Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, 1994. MR 1249482 (94k:55001)
  • 17. X. Jiang and H. Su, A classification of simple limits of splitting interval algebras, J. Funct. Anal. 151(1997), 50-76. MR 1487770 (99d:46076)
  • 18. X. Jiang and H. Su, On a simple unital projectionless C*-algebra, Amer. J. Math. 121(1999), 359-413. MR 1680321 (2000a:46104)
  • 19. J. L. Kelley, General Topology, Van Nostrand Reinhold, New York, Cincinnati, Toronto, London, Melbourne, 1955.MR 0070144 (16:1136c)
  • 20. H. Lin and N. C. Phillips, Crossed products by minimal homeomorphisms, in preparation.
  • 21. Q. Lin, Analytic structure of the transformation group associated with minimal dynamical systems, preprint.
  • 22. Q. Lin and N. C. Phillips, Ordered K-theory for C*-algebras of minimal homeomorphisms, pages 289-314 in: Operator Algebras and Operator Theory, L. Ge, et al. (eds.), Contemporary Mathematics vol. 228, 1998. MR 1667666 (2000a:46118)
  • 23. Q. Lin and N. C. Phillips, Direct limit decomposition for C*-algebras of minimal diffeomorphisms, pages 107-133 in: Operator Algebras and Applications, Advanced Studies in Pure Mathematics vol. 38, Mathematical Society of Japan, 2004. MR 2059804 (2005d:46144)
  • 24. Q. Lin and N. C. Phillips, The structure of C*-algebras of minimal diffeomorphisms, in preparation.
  • 25. T. A. Loring, Lifting Solutions to Perturbing Problems in C*-Algebras, Fields Institute Monographs no. 8, American Mathematical Society, Providence, RI, 1997.MR 1420863 (98a:46090)
  • 26. M. Martin and C. Pasnicu, Some comparability results in inductive limit C*-algebras, J. Operator Theory 30(1993), 137-147. MR 1302612 (96a:46109)
  • 27. J. Milnor, Differential Topology, mimeographed notes, Princeton University, 1958.
  • 28. J. R. Munkres, Topology: A First Course, Prentice-Hall, Englewood Cliffs, NJ, 1975. MR 0464128 (57:4063)
  • 29. J. Mygind, Classification of simple inductive limits of interval algebras with dimension drops, preprint 1998.
  • 30. J. Mygind, Classification of certain simple C*-algebras with torsion in $ K_1$, Canad. J. Math. 53(2001), 1223-1308. MR 1863849 (2002i:46054)
  • 31. A. R. Pears, Dimension Theory of General Spaces, Cambridge University Press, Cambridge, London, New York, Melbourne, 1975.MR 0394604 (52:15405)
  • 32. G. K. Pedersen, Pullback and pushout constructions in C*-algebra theory, J. Funct. Anal. 167(1999), 243-344. MR 1716199 (2000j:46105)
  • 33. N. C. Phillips, Representable K-theory for $ \sigma$-C*-algebras, K-Theory 3(1989), 441-478. MR 1050490 (91k:46082)
  • 34. N. C. Phillips, The C* projective length of $ n$-homogeneous C*-algebras, J. Operator Theory 31(1994), 253-276. MR 1331776 (96j:46058)
  • 35. N. C. Phillips, Cancellation and stable rank for direct limits of recursive subhomogeneous algebras, Trans. Amer. Math. Soc., this issue.
  • 36. N. C. Phillips, Real rank and property (SP) for direct limits of recursive subhomogeneous algebras, Trans. Amer. Math. Soc., to appear.
  • 37. M. A. Rieffel, C*-algebras associated with irrational rotations, Pacific J. Math. 93(1981), 415-429. MR 0623572 (83b:46087)
  • 38. M. A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. Ser. 3 46(1983), 301-333. MR 0693043 (84g:46085)
  • 39. M. A. Rieffel, The homotopy groups of the unitary groups of noncommutative tori, J. Operator Theory 17(1987), 237-254. MR 0887221 (88f:22018)
  • 40. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, San Francisco, St. Louis, Toronto, London, Sydney, 1966.MR 0210112 (35:1007)
  • 41. R. G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105(1962), 264-277. MR 0143225 (26:785)
  • 42. K. Thomsen, Limits of certain subhomogeneous C*-algebras, Mém. Soc. Math. Fr. (N.S.) No. 71(1997). MR 1649315 (2000c:46110)
  • 43. J. Tomiyama and M. Takesaki, Applications of fibre bundles to the certain class of C*-algebras, Tôhoku Math. J. (2) 13(1961), 498-522. MR 0139025 (25:2465)
  • 44. N. B. Vasil'ev, C*-algebras with finite-dimensional irreducible representations, Uspehi Mat. Nauk 21(1966), no. 1, 135-154 (in Russian); English translation in: Russian Math. Surveys 21(1966), no. 1, 137-155.MR 0201994 (34:1871)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 46L05, 19A13, 19B14, 19K14, 46L80

Retrieve articles in all journals with MSC (2000): 46L05, 19A13, 19B14, 19K14, 46L80


Additional Information

N. Christopher Phillips
Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222

DOI: https://doi.org/10.1090/S0002-9947-07-03850-0
Received by editor(s): January 22, 2001
Received by editor(s) in revised form: August 2, 2004
Published electronically: May 11, 2007
Additional Notes: This research was partially supported by NSF grants DMS 9400904 and DMS 9706850
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society