Generalizations of Chebyshev polynomials and polynomial mappings
Authors:
Yang Chen, James Griffin and Mourad E.H. Ismail
Journal:
Trans. Amer. Math. Soc. 359 (2007), 47874828
MSC (2000):
Primary 33C45
Published electronically:
May 17, 2007
MathSciNet review:
2320652
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we show how polynomial mappings of degree from a union of disjoint intervals onto generate a countable number of special cases of generalizations of Chebyshev polynomials. We also derive a new expression for these generalized Chebyshev polynomials for any genus , from which the coefficients of can be found explicitly in terms of the branch points and the recurrence coefficients. We find that this representation is useful for specializing to polynomial mapping cases for small where we will have explicit expressions for the recurrence coefficients in terms of the branch points. We study in detail certain special cases of the polynomials for small degree mappings and prove a theorem concerning the location of the zeroes of the polynomials. We also derive an explicit expression for the discriminant for the genus 1 case of our Chebyshev polynomials that is valid for any configuration of the branch point.
 1.
N.
I. Ahiezer, Orthogonal polynomials on several intervals,
Soviet Math. Dokl. 1 (1960), 989–992. MR 0110916
(22 #1784)
 2.
N.
I. Akhiezer, The classical moment problem and some related
questions in analysis, Translated by N. Kemmer, Hafner Publishing Co.,
New York, 1965. MR 0184042
(32 #1518)
 3.
N.
I. Ahiezer and Ju.
Ja. Tomčuk, On the theory of orthogonal polynomials over
several intervals, Dokl. Akad. Nauk SSSR 138 (1961),
743–746 (Russian). MR 0131005
(24 #A859)
 4.
N.
I. Akhiezer, Elements of the theory of elliptic functions,
Translations of Mathematical Monographs, vol. 79, American
Mathematical Society, Providence, RI, 1990. Translated from the second
Russian edition by H. H. McFaden. MR 1054205
(91k:33016)
 5.
Waleed
AlSalam, W.
R. Allaway, and Richard
Askey, Sieved ultraspherical
polynomials, Trans. Amer. Math. Soc.
284 (1984), no. 1,
39–55. MR
742411 (85j:33005), http://dx.doi.org/10.1090/S00029947198407424116
 6.
Jairo
Charris and Mourad
E. H. Ismail, On sieved orthogonal polynomials. II. Random walk
polynomials, Canad. J. Math. 38 (1986), no. 2,
397–415. MR
833576 (87j:33014a), http://dx.doi.org/10.4153/CJM1986020x
 7.
Jairo
A. Charris, Mourad
E. H. Ismail, and Sergio
Monsalve, On sieved orthogonal polynomials. X. General blocks of
recurrence relations, Pacific J. Math. 163 (1994),
no. 2, 237–267. MR 1262296
(95d:33004)
 8.
Yang
Chen and Mourad
E. H. Ismail, Ladder operators and differential equations for
orthogonal polynomials, J. Phys. A 30 (1997),
no. 22, 7817–7829. MR 1616931
(2000i:33011), http://dx.doi.org/10.1088/03054470/30/22/020
 9.
Yang
Chen and Nigel
Lawrence, A generalization of the Chebyshev polynomials, J.
Phys. A 35 (2002), no. 22, 4651–4699. MR 1908638
(2003k:33014), http://dx.doi.org/10.1088/03054470/35/22/302
 10.
J.
S. Geronimo and W.
Van Assche, Orthogonal polynomials on several
intervals via a polynomial mapping, Trans.
Amer. Math. Soc. 308 (1988), no. 2, 559–581. MR 951620
(89f:42021), http://dx.doi.org/10.1090/S00029947198809516206
 11.
Ya. L. Geronimus, On some finite difference equations and corresponding systems of orthogonal polynomials, Mem. Math. Sect. Fac. Phys. Kharkov State Univ. Kharkov Math. Soc. 25 (1975), 81100.
 12.
Mourad
E. H. Ismail, On sieved orthogonal polynomials. III.
Orthogonality on several intervals, Trans.
Amer. Math. Soc. 294 (1986), no. 1, 89–111. MR 819937
(87j:33014b), http://dx.doi.org/10.1090/S00029947198608199371
 13.
Mourad
E. H. Ismail, Discriminants and functions of the second kind of
orthogonal polynomials, Results Math. 34 (1998),
no. 12, 132–149. Dedicated to Paul Leo Butzer. MR 1635590
(99g:42032), http://dx.doi.org/10.1007/BF03322044
 14.
Franz
Peherstorfer, On BernsteinSzegő orthogonal polynomials on
several intervals. II. Orthogonal polynomials with periodic recurrence
coefficients, J. Approx. Theory 64 (1991),
no. 2, 123–161. MR 1091466
(92a:42031), http://dx.doi.org/10.1016/00219045(91)90071H
 15.
F.
Peherstorfer and K.
Schiefermayr, Description of extremal polynomials on several
intervals and their computation. I, II, Acta Math. Hungar.
83 (1999), no. 12, 27–58, 59–83. MR 1682902
(99m:41010), http://dx.doi.org/10.1023/A:1006607401740
 16.
Gábor
Szegő, Orthogonal polynomials, 4th ed., American
Mathematical Society, Providence, R.I., 1975. American Mathematical
Society, Colloquium Publications, Vol. XXIII. MR 0372517
(51 #8724)
 17.
Ju. Ja. Tomcuk, Orthogonal Polynomials Over a System of Intervals on the Number Line, Zap. Fiz.Mat. Khar'kov Mat. Oshch., 29 (1964) 93128 (in Russian).
 18.
V.
B. Uvarov, Relation between polynomials orthogonal with different
weights, Dokl. Akad. Nauk SSSR 126 (1959),
33–36 (Russian). MR 0149187
(26 #6679)
 19.
V.
B. Uvarov, The connection between systems of polynomials that are
orthogonal with respect to different distribution functions, Ž.
Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1253–1262
(Russian). MR
0262764 (41 #7369)
 1.
 N. I. Ahiezer, Orthogonal polynomials on several intervals, translated in Soviet Math. 1 (1960), 989992. MR 0110916 (22:1784)
 2.
 N. I. Ahiezer, The Classical Moment Problem and Some Related Questions in Analysis, English translation, Oliver & Boyed, Edinburgh, 1965. MR 0184042 (32:1518)
 3.
 N. I. Ahiezer and Ju. Ja. Tomcuk, On the theory of orthogonal polynomials over several intervals. (Russian) Dokl. Akad. Nauk USSR 138 (1961), 743746. MR 0131005 (24:A859)
 4.
 N. I. Akhiezer, Elements of the Theory of Elliptic Functions (Transl. Math. Monographs vol. 79), Providence, RI: Amer. Math. Soc., 1990. MR 1054205 (91k:33016)
 5.
 W. AlSalam, W. Allaway, and R. Askey, Sieved ultraspherical polynomials, Trans. Amer. Math. Soc. 284 (1984), 3955.MR 0742411 (85j:33005)
 6.
 J. A. Charris and M. E. H. Ismail, On sieved Orthogonal Polynomials II : Randon walk polynomials, Canad. J. Math. 38 (1986) 397415. MR 0833576 (87j:33014a)
 7.
 J. A. Charris, M. E. H. Ismail, and S. Monsalve, On sieved Orthogonal Polynomials X : General Blocks of Recurrence Relations, Pacific J. Math. 163 (1994) 237267. MR 1262296 (95d:33004)
 8.
 Y. Chen and M. E. H. Ismail, Ladder operators and differential equations for orthogonal polynomials, J. Phys. A 30 (1997), 78187829.MR 1616931 (2000i:33011)
 9.
 Y. Chen and N. Lawrence, A generalization of the Chebyshev polynomials, J. Phys. A 35 (2002) 46514699 (2001).MR 1908638 (2003k:33014)
 10.
 J.S. Geronimo and W. Van Assche, Orthogonal polynomials on several intervals via a polynomial mapping, Trans. Amer. Math. Soc. 308 (1988) 559581. MR 0951620 (89f:42021)
 11.
 Ya. L. Geronimus, On some finite difference equations and corresponding systems of orthogonal polynomials, Mem. Math. Sect. Fac. Phys. Kharkov State Univ. Kharkov Math. Soc. 25 (1975), 81100.
 12.
 M. E.H. Ismail, On sieved orthogonal polynomials III: Polynomials orthogonal on several intervals, Trans. Amer. Math. Soc. 294 (1986), 89111.MR 0819937 (87j:33014b)
 13.
 M. E.H. Ismail, Discriminants and functions of the second kind for orthogonal polynomials, Results in Mathematics 34 (1998), 132149. MR 1635590 (99g:42032)
 14.
 F. Peherstorfer, On BernsteinSzego Orthogonal Polynomials on Several Intervals II: Orthogonal Polynomials with Periodic Recurrence Coefficients. J. Approx. Theo. 64 (1991) 123161.MR 1091466 (92a:42031)
 15.
 F. Peherstorfer and K. Schiefermeyr, Decription of Extremal Polynomials on Several Intervals and their Computation. I Acta. Math. Hungar. 83 (1999) 2758.MR 1682902 (99m:41010)
 16.
 G Szego, Orthogonal Polynomials American Mathematical Society (1975).MR 0372517 (51:8724)
 17.
 Ju. Ja. Tomcuk, Orthogonal Polynomials Over a System of Intervals on the Number Line, Zap. Fiz.Mat. Khar'kov Mat. Oshch., 29 (1964) 93128 (in Russian).
 18.
 V. B. Uvarov, On the connection between polynomials, orthogonal with different weights, Dokl. Acad. Nauk SSSR, 126 (1959) 3336. MR 0149187 (26:6679)
 19.
 V.B. Uvarov, The connection between systems of polynomials that are orthogonal with respect to different distribution functions, USSR Computat. Math. and Math. Phys. 9 (1969) 2536. MR 0262764 (41:7369)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
33C45
Retrieve articles in all journals
with MSC (2000):
33C45
Additional Information
Yang Chen
Affiliation:
Department of Mathematics, Imperial College, London SW7 2BZ, United Kingdom
Email:
y.chen@ic.ac.uk
James Griffin
Affiliation:
Department of Mathematics, University of Central Florida, Orlando, Florida 32826
Address at time of publication:
Department of Mathematics, American University of Sharjah, P.O. Box 26666, United Arab Emirates
Email:
jgriffin@math.ucf.edu, jgriffin@aus.edu
Mourad E.H. Ismail
Affiliation:
Department of Mathematics, University of Central Florida, Orlando, Florida 32826
Email:
ismail@math.ucf.edu
DOI:
http://dx.doi.org/10.1090/S0002994707040226
PII:
S 00029947(07)040226
Received by editor(s):
January 27, 2004
Received by editor(s) in revised form:
May 3, 2005
Published electronically:
May 17, 2007
Article copyright:
© Copyright 2007
American Mathematical Society
